

Odum School of Ecology NIVERSITY OF GEORGIA

CIEE Monteverde campus employs a biodigester to anaerobically break down animal waste, but openair effluent ponds may attract disease vector mosquitoes.

Figure 1. Cow and pig waste feeds into the biodigester and is anaerobically broken-down producing methane, a biogas that is used for cooking in the CIEE Monteverde campus kitchen

Questions

- Mean what is the abundance of mosquitos and species composition in animal digester effluent ponds?
- Mean How does mosquito abundance and composition in effluent ponds compare to other standing bodies of water across CIEE Monteverde campus?
- Monets help prevent oviposition and reduce mosquito abundance in animal digestor effluent ponds?

Methods

- Sampled four bodies of water across the CIEE campus at six time points (Figure 2)
- [™] 50mL tubes were used for collection of mosquito larvae at transects in the digester effluent ponds and 3 additional sites
- Representation and the second site
- Reared a subset of larvae to identify species
- Conducted a preliminary experiment using netting as a control measure to decrease mosquito oviposition and abundance in digester effluent

Results

Dominant Species Year 2017 Aedes spp. 2018 Aedes aegypti 2019 Culex spp.

1.5

10/20/19

Photo descriptions: Photo A; additional sampling sites across CIEE Monteverde Campus, Photo B; sampling method, Photo C: example of larvae sample from animal digester, Photo D: mosquito larvae in rearing container, Photo E; example of rearing containers, Photo F; species identification in lab, Photo G; image of adult Culex spp.

References Briggs, A.A. & Osenberg, C.W. Oecologia (2019) 190: 835. https://doi.org/10.1007/s00442-019-04448-3 Calderón-Arguedas, O., Troyo, A., Solano, M. E., Avendaño, A., & Beier, J. C. (2009). Urban mosquito species (Diptera: Culicidae) of dengue endemic communities in the Greater Puntarenas area, Costa Rica. Revista de biologia tropical, 57(4), 1223–1234. doi:10.15517/rbt.v57i4.5459 Githeko, Andrew & Lindsay, Steve & Confalonieri, Ulisses & Patz, Jonathan. (2000). Climate Change and Vector- Borne Diseases: A Regional Analysis. Bulletin of the World Health Organization. 78. 1136-47. 10.1590/S0042-9686200000900009.

Abundance of mosquito populations over space and time across CIEE Monteverde Campus, Costa Rica

Juliet Eden, Sydney Wright, Ron Carroll and Amanda Rugenski

Animal digester effluent ponds are the most **significant** breeding ground for mosquitos on CIEE Monteverde Campus, Costa Rica. Culex spp. is dominating animal digester retention ponds.

Figure 2. Average mosquito larvae abundance in animal digester effluent ponds 1-4; cyclical pattern between Pond 1 and Pond 2 larvae abundance, and low abundance in pond 3 and 4.

Mosquito Control Experiment

Photo H. Trial netting experiment

Photo I. Implementation of nets across all four retention ponds

Results from preliminary netting experiment were inconclusive - mosquitoes did not oviposit in netted or open-air containers. Currently, a trial with netting placed over each of the effluent ponds is being conducted to further elucidate if netting is an effective approach to reducing mosquito populations in effluent ponds.

Center for Undergraduate Research Opportunities UNIVERSITY OF GEORGIA

Sample Sites

Figure 3: Animal digester effluent ponds 1-4 with sampling transects outlined

Figure 4: Sampling sites across CIEE Monteverde Campus, San Luis, Costa Rica: Human Digester Output, Medicinal Garden Pond, Animal Digester Retention Ponds, and Marsh Land

Future Directions

- Me Incorporate quantitative sampling of mosquito population dynamics to standardize long term monitoring
- Explore what is causing the annual changes in species composition
- Continue monitoring of ponds with netting
- Measure more abiotic and biotic variables (e.g. dissolved oxygen and continuous temperature measurements; other macroinvertebrates)

What does it mean?

- *Culex* spp. is a vector for West Nile virus and Japanese encephalitis (Calderón-Arguedas et al. 2009).
- As temperature increases, so does the spread of mosquito populations into warmer climates. Vector carrying mosquitos could be a serious problem in the future (Githeko et al. 2000).

Acknowledgments