Measles Dynamics (London: 1950-1968)

(
 117: (yc: г:)

Social contact surveys confirm dynamic shifts in contacts though school year

Eames et al. (2012)

- Culturally and environmentally diverse
- Highest reported birth rate in the world
- Low vaccine coverage in Niger and surrounding countries
- Relatively high case fatality

Niamey

Measles Dynamics in Niger

- Measles epidemic begin in the dry season

Measles in Niger

Bharti et al. (20II; Science) used intensity of nighttime lights from satellite imagery to estimate population density

Measles in Niger

Transmission rates and population density driven by pattern of rainfall and agricultural practices

Measles in Africa

Seasonality differs regionally, driven by patterns of rainfall and agricultural practices

Latitudinal trends in Influenza transmission

b) USA

Latitudinal trends in Influenza transmission

- What are mechanisms causing these patterns?
- Host aggregation (in winter)
- Changes in host mucosal lining

Impact of humidity on aerosol transmission environmental determinant of virus survival

Open question, but best available evidence

 suggests absolute humidity is major explanatory variable for influenza viability through seasonse) 1972-2002 $\mathbf{R}_{\mathbf{0}}(\mathrm{t})$ Climatologies

d) 1972-2002 Specific Humidity Climatologies

Colonibla
$4^{6} \mathrm{~N}$

b) Influenza Virus Survival

Cholera seasonality

Polio

WWII Era (1943-1954)

Photoperiodism

Association between mortality probability of 1918 influenza pandemic and latitude

Photoperiodism: physiological response of animals/plants to changes in day length

In laboratory rodent experiments, exposure to short day lengths alone is sufficient to attenuate symptoms of simulated bacterial and viral infections

Winter Solstice Day Length (h light/day)

Polio

WWII Era (1943-1954)

Hypothesis I: Changes in susceptibility linked to light/dark cycle, typically mediated by changes in duration of daily melatonin pulse?

Seasonality in Births

Polio

WWII Era (1943-1954)

Hypothesis II: State-specific difference in epidemic timing due to latitudinally driven demography and seasonality in births?

General mechanisms for seasonality

Host exposure

Host aggregation \& increased contacts Vector abundance \& biting rates Development \& survival of parasite

Host Susceptibility

Changes in host stress \& immunity

Host Population Size

 Seasonally pulsed births
Measles in humans Dramatic epidemic cycles and 'fade out'

- Reported monthly cases 1945-70
- Descending order of population size
- Dramatic cycles in cases
- Reduction in UK after 1968
- Extinction ("fade out") in Iceland between epidemics

Critical community size (CCS)

- Smallest population of susceptible hosts below which disease goes extinct, and above which disease persists
- Microparasitic infections, like measles, can persist in large cities but 'fade out' in smaller towns
- Influx of susceptibles in-between epidemics not sufficient in small places to maintain chain of transmission

Different kinds of epidemics

Measles outbreaks in England \& Wales

Different kinds of epidemics

Bartlett (1956)

Different kinds of epidemics

Bartlett (1956)

Different kinds of epidemics

Bartlett (1956)

Lecture Summary

- Dynamics of epidemics
- Recurrent outbreaks
- Seasonal pathogens and the drivers of "seasonality"
- Pulsed births
- Changes in host susceptibility
- Pattern of contacts, pathogen persistence, vector biology
- Fade-outs and Critical Community Size
- Next
- Metapopulations
- Within-host dynamics - Polymicrobial systems

Measles

Rate of Nonmedical Vaccine Exemptions By State

Percentage of kindergartners with nonmedical exemptions, 2012-13 school year

Measles in England \& Wales

Measles persists well in

> But "fades out" (goes
> locally extinct) in small
> populations

Long-term persistence: Critical Community Size (CCS)

\downarrow Smallest population of hosts below which disease goes extinct, and above which disease persists (Bartlett 1956)

Measles can persist in cities with 300,000-500,000 but 'fades out' in smaller towns

How would vaccination affect CCS?

Measles CCS in Model Vs Data

$\Delta 0$
, 0

No increase in Critical Community Size!

\Rightarrow vaccine doesn't work?

Eng
Wales Data

1944 Week 3

Spatial Synchrony \& Correlation

Correlation coeficient $=0.79$

Conrealation r.nefficient $=-1$

Spatially
Uncorrelated

Strongly

 correlatedNegatively correlated

Measles in England \& Wales

Pre-vaccine epidemics significantly more spatially synchronised than in
vaccine era

Rohani et al. (1999)

The 'Rescue Effect'

(Brown \& Kodric-Brown 1977

Consider two towns linked by movement

With epidemics in phase, number of fadeouts remains largely unaffected

Out-of-phase towns may reduce fadeouts in epidemic troughs

So, spatial ecology of epidemics also important May have significant vaccination consequences

Metapopulation Ecology

\star What are metapopulations?
\& Meta: "of a higher order"
\star Metapopulation = a population of populations
\checkmark Any patchily distributed system where populations can go extinct and be recolonized

- Set of local populations with migration between patches

Spatial disease dynamics
 Mechanism for parasite persistence

Local persistence
\downarrow Susceptible recruitment
Loss of immunity
New births

Regional persistence
\downarrow Spatial transmission between partly isolated host populations - spatial spread
\& Asynchronous epidemics: epidemiological metapopulations

The 'Rescue Effect' in Action?

Potential Role for Pulsed Vaccination?

Vaccination at same time in two cities with out-of-phase dynamics can synchronise epidemics (Earn et al. 1998)

Summary

\downarrow Travelling waves from point source introductions

* "Metapopulation" concept also applicable in disease ecology
* Understanding patterns of spatial synchrony can explain persistence dynamics (measles)
* In E\&W, measles transmission follows a spatial hierarchy, with core cities and satellite towns and villages
* Some cities/states play a bigger role in spatial transmission
\& Important for control or management strategies

Measles Virus

- Paramyxoviridae family, Morbillivirus genus
- Non-segmented, enveloped, singlestranded, negative sense RNA virus
- Genome: 16,000 nt, encodes 6 structural and 2 non-structural proteins
- Cellular receptors: CD46, CD150 \& Nectin-4

youtu.be/y0opgc1WoS4

Measles Infection

Time Course of Measles Infection

- Measles is a disease with great complexity
- Systemic infection
- Targets broad range of cells: immune cells, epithelial \& endothelial cells, ...

MV Infection and the Immune system

- Early innate response
- activation of NK cells
- early production of INF-a \& β
- Adaptive immune responses
- Cellular immunity important for clearing virus
- Antibody response protect from reinfection (long-lasting immunity)
- immunity conferred to infants by maternal ABs
- Unclear role of ABs in viral clearance

Charles Creighton (1894)

"... the great meastes epidemic of 1808 in Glasgow was indeed followed by many deaths from whooping cough in 1809.

Whatever correspondence or relation there may be between measles and whooping-cough, (and it has been remarked by many in the ordinary way of experience), it eludes the method of stakiskics."

Immunosuppressive Effects of Measles

- "The immune responses induced by MV infection are paradoxically associated with depressed responses to non-MV antigens, and this effect continues for several weeks to months after resolution of the acute illness... delayed-type hypersensitivity (DTH) responses to recall antigens, such as tuberculin, are suppressed and cellular and humoral responses to new antigens are impaired."
- "MV-induced immune suppression renders individuals more susceptible to secondary bacterial and viral infections that can cause pneumonia and diarrhoea, and is responsible for much of the measles-related morbidity and mortality. Pneumonia, the most common fatal complication of measles, occurs in $56-86 \%$ of measles-related deaths"

The Measles Paradox

- "Hallmark of measles infection": generalized immune suppression lasting several weeks to months after resolution of virus
- increased susceptibility to opportunistic infections
-BUT measles is associated with immune activation and induces strong MV-specific immune responses that confer lifelong immunity

Measles infection in macaques

de Vries et al. 2012, PLOS Pathogen

- Depletion of pre-exisking CD150+ memory lymphocyles
- Whether depletion is mediated by necrosis, apoptosis, pyroptosis, or cytokoxic T-cells remains to be delermined

Polymicrobial systems

What are effects of measles immune suppression on other infectious diseases?

Polymicrobial diseases: transmission and pathogenicity involve interactions among distinct pathogens

Examine by quantifying consequences of measles vaccination

Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality

Measles vaccine coverage

Mina et al. (2015) evidential requirements

I. Non-measles mortality should be correlated with measles incidence data
II. Immune memory loss mechanism should present as a strengthening of this association when measles incidence data are appropriately accumulated (a measles "shadow")
III. Strength of association should be greatest when mean duration over which cases are accumulated matches mean duration required to restore immunological memory after MV infection
IV. Estimated duration should be consistent both with available evidence of increased risk of mortality after MV, compared with uninfected children, and with time required to build a protective immune repertoire in early life

Mina et al. (2015)

Rolloul of national measles roubine immunizalion programs associaked with drop in non-measles infectious disease deaths - a measles "shadow"?

Mina et al. (2015)

USA

Denmark

How long is the 'shadow'?

England \& Wales

Polymicrobial effects

How long is the 'shadow'?

Conclusions

-Population evidence for prolonged (~ 2 - to 3-yr) impact of measles infection on subsequent mortality from other pathogens
-MV infection and vaccination generate herd immunity against subsequent measles epidemics
-MV infections could also reduce population immunity against other infections via measles-induced immune amnesia
-Measles vaccination cost-effective intervention against measles
-Mina et al. suggest extra bonus - additional immunological dividends: mortality (and probably morbidity) reductions linked to measles vaccination might be much greater than previously considered
-"polymicrobial herd protection"

