Quiz

Which of the following are likely to help a parasite to persist in a host population?

- 1) High host birth rate
- 2) Herd immunity
- 3) Waning immunity
- 4) Adaptive parasite evolution
- 5) R₀<1
- 6) High host recovery rate

Write down all numbers that apply

Host-parasite interactions

ECOL 4000/6000

The classic SIR model

	gains	losses
S	0	transmission
I	transmission	recovery
R	recovery	0

Transmission of infection

This involves susceptible and infected individuals

Note: this model assumes infected=infectious

We often assume a linear relationship between contact rate and population size

e.g. the chances of bumping into someone on the sidewalk in different populations

Contact rate = cN

Transmission requires:

i) Contact between individuals (cN)

ii) The 'right' sort of contact (between an S and an I)

iii) The parasite establishes in the new host

For one infectious individual that makes contact with a random individual in the population, the chance that it is with a susceptible individual is S/N

So for "I" infectious individuals, this scales up to (S/N)*I

And we assume there is some (biologically determined) chance or rate that this sort of contact allows the parasite to establish in the new host (call this 'a')

Transmission requires:

i) Contact between individuals (cN)

ii) The 'right' sort of contact (between an S and an I) (S/N)*I

iii) The parasite establishes in the new host (a)

Expression for transmission = (cN)*(S/N)*I*a

Research papers usually make the notation simpler by replacing the constants c^*a by β , which is called the transmission rate

Overall expression for transmission = βSI

Our transmission term determines how quickly individuals in the S compartment move into the I compartment

The infectious period

This is the length of time that an individual is capable of transmitting infection to susceptible individuals

Commonly, we use $1/\gamma$ for the infectious period, and rate of movement from I compartment to R compartment is γ I

After this time, the host's immune system clears the virus, and this simple model assumes that hosts remain recovered

A simple "compartment" model

 β = transmission rate 1/ γ = infectious period

S, I and R are state variables of the model (they change over time)

 β and γ are parameters of the model (in most models, these do not change over time)

A simple "compartment" model

$\frac{dS}{dt} = -\beta SI$		gains	losses
dt ' $dI = \beta S I = \alpha I$	S	0	transmission
$\frac{dt}{dt} = \rho S I - \gamma I$	I	transmission	recovery
$\frac{dR}{dt} = \gamma I$	R	recovery	0

This model is a density-dependent transmission model – transmission is density-dependent because we assumed contact rate increased with N

Disease invasion (density-dependent transmission)

The number of infected individuals will increase if more is flowing into the "I" compartment than is flowing out (the same as saying dI/dt>0)

Early on, infected individuals are rare and so S~N (the population size)

Disease invasion (density-dependent transmission)

The number of infected individuals will increase if more is flowing into the "I" compartment than is flowing out (the same as saying dI/dt>0)

Early on, infected individuals are rare and so S~N (the population size)

What can cause large values of R0 according to this model?

Disease invasion (density-dependent transmission)

The number of infected individuals will increase if more is flowing into the "I" compartment than is flowing out (the same as saying dI/dt>0)

Density-independent transmission:

Alternative to density-dependent transmission

Population size

Density-independent transmission:

Transmission requires:

i) Contact between individuals (c)

ii) The 'right' sort of contact (between an S and an I) (S/N)*I

iii) The parasite establishes in the new host ^(a)

Expression for transmission = (c)*(S/N)*I*a

Research papers usually make the notation simpler by replacing the constants c^*a by β , which is called the transmission rate

Expression for transmission = β SI/N

Disease invasion (density-independent transmission)

The number of infected individuals will increase if more is flowing into the "I" compartment than is flowing out (the same as saying dI/dt>0)

Early on, infected individuals are rare and so S~N (the population size)

We want an average individual in the population to give rise to an $R_0 < 1$

If we vaccinate a proportion of the population, x, with a perfect vaccine then we have two types of individual:

Туре	Proportion	Basic reproductive number
protected	×	0
susceptible	I-x	R ₀

Then we require $(1-x)^*R_0 < 1$ which tells us that, at least, we need to vaccinate a proportion $x>1-1/R_0$

1968-73: coverage in Africa & Indian subcontinent ranged from 77-95%

Summary

- SIR model assumes all individuals belong to one compartment (S, I or R) at any time
- Transmission may be density-dependent or densityindependent
- (Only) Density-dependent transmission has a threshold population size for parasite invasion
- R0 determines the proportion of the population that must be immunized to protect the population (herd immunity concept)