Quiz

The two key processes in metapopulation dynamics are:

- a) Competition & Extinction
- b) Colonization & Predation
- c) Predation & Competition
- d) Colonization & Extinction
- e) Parasitism & Predation
- f) Competition & Parasitism

Metapopulation Dynamics

Discrete Space – Patchy Habitat

Glanville Fritillary in Finland

- Åland islands

Feeds on *Plantago lanceolata* $\sim 1/3$ habitat patches occupied any given yr High population turnover

Hanski et al.

Bay Checkerspot Butterfly (Euphydryas editha bayensis)

Levin's Model

- Shift gears: No longer model dynamics of populations on patches, but dynamics of occupied patches on a landscape
- Assumptions
 - Patches are roughly equivalent
 - Population colonization/extinction is not related to properties of the patch, including current population size
 - A large number of patches justified modeling p=n/x the proportion of patches occupied
 - Colonization rate is proportional to fraction of patches occupied

Levin's Model

overall rate at which proportion of patches occupied changes

Levin's Model

Set equal to zero and solve for equilibrium occupancy

$$\frac{dp}{dt} = cp(1-p) - ep$$
$$cp(1-p) - ep = 0$$
$$c(1-p) = e$$
$$1-p = e/c$$
$$p^* = 1 - e/c$$

Conclusions:

- At equilibrium, not all sites are occupied unless *e*=0
- For persistence $(p^*>0)$, *c* must be greater than *e*

Mainland-Island Model

- Assumptions
 - Patches are roughly equivalent
 - Population colonization/extinction is not related to properties of the patch, including current population size
 - A large number of patches justified modeling p=n/x the proportion of patches occupied
 - Colonization is proportional to a constant rate c ("propagule rain")

$$\frac{dp}{dt} = c(1-p) - ep$$

Mainland-Island Model

Set equal to zero and solve for equilibrium occupancy

$$\frac{dp}{dt} = c(1-p) - e p = 0$$
$$c(1-p) - e p = 0$$
$$c - cp - ep = 0$$
$$c = cp + ep$$
$$c = p(c+e)$$
$$p^* = c/(c+e)$$

Conclusions:

- At equilibrium, not all sites are occupied unless *e*=0
- Population persists for all c>0