Homework

1. Given that the female grizzly bear population was 44 in 1959 and 34 in 1975, estimate the reproductive ratio (λ) during this time.
2. Starting from 1975, if there were no interventions (i.e., λ did not change) how many female grizzly bears would there be after 5 years (rounding to the nearest individual)?
3. In the same scenario of no interventions in 1975, and assuming an equal sex ratio, in which year would the total Yellowstone popula-
. tion first drop below two individuals?
4. Consider a population in a reserve with year-round births ($b=0.2$ offspring per individual per year), deaths ($d=0.16$ per individual per year), and emigration ($a=0.5$ per individual per year). Will this population grow or decline?
5. Now, suppose emigration is eliminated by the construction of a barriel around the reserve. Does this change the qualitative behavior of the population (i.e., growth versus decline)?
6. If the population size at the time the barrier is constructed is $n_{0}=$ 10 , what will the population size be in 50 years?
(1) From san 11

$$
\text { For }=\frac{10 n}{1075}(34 / 44)=0.016114
$$

using. $N_{t}=\lambda^{t} N_{0}$ we know $N_{0}=34$ (in 1975) and we want to project. $t=5$ yrs forward. $N_{5}=(0.984)^{5} \times 34=31.3 \sim$ (31) to nearest ANSWER R \quad in der [1 mark for correct formula, 1 mark for correct implementation] WAY
(4) "yearroound births" implies continuous time fundamental equation:

$$
\frac{d n}{d t}=(b-d-a) n=-0.46 n \therefore \text { pop. will decline }
$$

[1 mark for correct formula, I mark for correct implementation/ conclusion]
(5) "barrier" implies no emigration $\therefore a=\varnothing$. Now

$$
\frac{d n}{d t}=(b-d) n=+0.04 n \quad \therefore \text { pop. will grow }
$$

[1mark for correct answer]
(6)

$$
\begin{aligned}
& \text { Using } n_{t}=n_{0} e^{r t} \quad(\text { onapter 2, equation 2) } \\
& n_{t}=10 \times e^{0.04 \times 50}=73.9 \sim 73 \text { or } 74
\end{aligned}
$$

[1 mark for correct formula, 1 mark for correct implementation]
(3) Assuming an equal sex ratio, then the total population declining to 2 individuals is equivalent to the censused female populations declining to 1 individual. In 1974, there were 34 females (NO) and lamba~0.984. Using the formula $\log (\operatorname{lambda})=\log (\mathrm{Nt} / \mathrm{NO} 0) / t$ we seek the value of t corresponding to $\mathrm{Nt}=1$. Rearranging, we get $\mathrm{t}=\log (\mathrm{Nt} / \mathrm{N} 0) / \log (\operatorname{lambda})$. Putting in the relevant numbers we get: $t=\log (1 / 34) / \log (0.984)=218$ years, which is approximately the year 2192.

