Ecosystem Engineering ### Some questions - Why do populations cycle? - Why are habitat patches unoccupied? ### Effects of ecosystems on organisms - Demography (growth, survival, reproduction) - Density dependence (intraspecific competition) ### Effects of organisms on ecosystems North American beaver Castor canadensis ### What population consequences come from the feedback of organisms on ecosystems? #### Stages of beaver-modified environment Beaver active for (~4 years , range: 1-20) Disintegration and drainage -> Beaver meadow (~70 year) Conversion to forested riparian zone (~100s years) ### **Ecosystem Engineering** Ecosystem engineering – the physical or chemical modification of habitats by organisms #### Universality of ecosystem engineering | Kingdom | Engineering process | |-----------------------------|---| | Eubacteria & Archaebacteria | Decomposition Production of products of metabolism (oxygen, ammonia) Nitrogen fixation Bacterial allelopathy | | Protista | Physical/chemical weathering Soil production Photosynthetic and metabolic products Oxygen production | | Fungi | Decomposition Physical/chemical weathering Soil production Moisture retention Mineral extraction Creation of environmental structure | | Plantae | Photosynthetic and metabolic products Physical/chemical weathering Alteration of hydrology Soil stabilization Microclimate modulation Nutrient retention and modification of nutrient cycles Allelopathy Scattering and absorption of light; creation of shade Modification of wind speed | | Animalae | Construction of nests, burrows, cases, food caches, dens Provision and protection of nursery environments Nutrient retention and modification of nutrient cycles Soil compaction Decomposition of coarse organic matter | ### Kinds of ecosystem engineering - Habitat creation (North American beaver) - Habitat stabilization (Spartina alterniflora) - Biomixing/Bioturbation (mussels) - Habitat complexity (corals, trees) # Population dynamics in organism-modified environments (Gurney model) Rate of change of ecosystem engineer $$\frac{dE}{dt} = rE(1 - E/H)$$ Abundance of limiting resource # Population dynamics in organism-modified environments Total stock (T) of habitats is composed of usable habitat (H), degraded habitat (D), and virgin habitat (V) T=D+H+V # Population dynamics in organism-modified environments Cooperative engineering $$\frac{dE}{dt} = rE(1 - E/H)$$ Degradation through use $$\frac{dH}{dt} = (\alpha + \beta E)V - \delta H$$ $$\frac{dV}{dt} = \rho(T - V - H) - (\alpha + \beta E)V$$ Recovery to virgin state Conversion through engineering ### Equilibria A single engineer can replenish habitat faster than it degrades • If $\alpha T > \delta$ then there are two equilibria Unstable $$E^* = 0$$ "ZE" state (zero engineer) Stable or unstable $$E^* = \frac{T}{2} \left[\frac{1}{1 + \delta/p} - \frac{\alpha}{\beta T} \right] + \sqrt{\left(\frac{1}{1 + \delta/p} + \frac{\alpha}{\beta t} - \frac{4\delta}{\beta (1 + \delta/p)T^2} \right)}$$ • If $$\alpha T < \delta < \frac{\beta T^2 (1 + \delta/\rho)}{4} \left(\frac{1}{1 + \delta/\rho} + \frac{\alpha}{\beta T} \right)^2$$ then three equilibria Stable $$E^* = 0$$ Unstable $$E^* = \frac{T}{2} \left[\frac{1}{1 + \delta/p} - \frac{\alpha}{\beta T} \right] - \sqrt{\left(\frac{1}{1 + \delta/p} + \frac{\alpha}{\beta t} - \frac{4\delta}{\beta (1 + \delta/p) T^2} \right)}$$ Lower "FE" state Stable or unstable $E^* = \frac{T}{2} \left[\frac{1}{1 + \delta/p} - \frac{\alpha}{\beta T} \right] + \sqrt{\left(\frac{1}{1 + \delta/p} + \frac{\alpha}{\beta t} - \frac{4\delta}{\beta (1 + \delta/p) T^2} \right)}$ An Allee effect Stable or unstable $$E^* = \frac{T}{2} \left[\frac{1}{1 + \delta/p} - \frac{\alpha}{\beta T} \right] + \sqrt{\left(\frac{1}{1 + \delta/p} + \frac{\alpha}{\beta t} - \frac{4\delta}{\beta (1 + \delta/p)T^2} \right)}$$ ### Unstable upper FE state Unstable if: (1) β too small (little cooperation), (2) δ large (degradation too fast), or (3) ρ to small (environmental recovery slow) ### Population dynamics Active beaver colonies in Huntington Wildlife Forest "The only mammal known not to have a cycle is the beaver" (Christian 1950) # Population dynamics in organism-modified environments (Wright model) #### Two key differences - (1) Organism abundance doesn't just depend on habitats, but is equivalent to it - (2) Habitat construction can be by "local colonists" from within the system and immigrants who arrive from outside (a landscape effect) ### Steady state solution $$[n[1+\delta/\rho]]A^{*2}+[i[1+\delta/\rho]+\delta-n]A^{*}=0$$ n – per patch production rate of colonists δ – decay rate of patches from active to degraded (A \rightarrow D); inverse of occupancy duration ρ – recovery rate from degraded to potential (D \rightarrow P); inverse of duration degraded i – immigration rate #### Steady state fraction of sites occupied (A*) - Decreases with δ (the faster a site degrades the fewer active sites there will be at equilibrium) - Increases with ρ (the faster a site becomes habitable again the more active sites there will be at equilibrium) - Increases with n (the more productive the existing sites are at producing new colonists the more active sites there will be at eq'm) Steady state fraction of sites occupied (A*) typically less than 50% Change of model results in a single finite steady state, at which a large fraction of sites may be unoccupied (like metapopulation dynamics) # Effects of ecosystem engineering on populations: Conclusions - Can give rise to intrinsic cycling without interacting with another species - Can give rise to a lower unstable equilibrium (an Allee effect) - Can give rise to a substantial fraction of available habitat occupied at any one time ### Summary - Ecosystem engineering is the physical or chemical modification of habitats by organisms - Ecosystem engineering can result in - Population cycles - Allee effects - Vacant habitats