
General competition

Key concepts

• Interspecific competition

• Relative strength of inter- vs. intraspecific competition

• Phase-plane analysis and zero net growth isoclines (ZNGIs)

• Stable and unstable co-existence equilibrium

• Alternative stable states

A recent invasion of shore crabs

Figure 1: Shore crab (Hemigrapsus
sanguineus).

Figure 2: Green crab (Carcinus
maenas).

The green crab (Carcinus maenas) arrived in the US from Europe

around 1850 due to increasing shipping tra�c, and spread rapidly

along the east coast to become a dominant crab species, feeding on

abundant mussel populations. In the late 1980s, the shore crab (Hem-

igrapsus sanguineus) also arrived on the east coast of the US for the

first time, and is in direct competition with the green crab for mussels.

The shore crab appears to be successfully invading in spite of the pres-

ence of an established competitor, often reaching very high population

densities compared to the green crab. Ecological rules describing com-

petition between two species can help us understand how this scenario

emerges, and what the long-term fate of each population is likely to

be.

Lotka-Volterra competition

In the chapter on density-dependent population growth, we have al-

ready been introduced to the idea that individuals can regulate the

rate of growth and carrying capacity of the population by competing

with other individuals for a shared resource. In particular, we repre-

sented this idea with the following di↵erential equation:

dN

dt

= rN

✓
K � N

K

◆
(1)



4

Figure 3: Density of Carcinus maenas

and Hemigrapsus sanguineus at 30
sites throughout their invaded ranges.
Heights of bars indicate relative mean
values, n=16 values per site, Gri�n
and Delaney, 2007.

So, when N is far below the carrying capacity (K), then K � N ⇡
K and the di↵erential equation approximates exponential growth

(dN/dt ⇡ rN). However, as N increases to a value close to K, then

K � N ⇡ 0 and the di↵erential equation approximates an equilibrium

(dN/dt ⇡ 0) so the population stops growing.

We can extend this concept to competition between two species, N1
and N2, with a set of two, linked di↵erential equations:

dN1
dt

= r1N1

✓
K1 � N1 � a12N2

K1

◆
(2)

dN2
dt

= r2N2

✓
K2 � N2 � a21N1

K2

◆
(3)

These equations describe generalized competition between two

species, and are known as the Lotka-Volterra competition equations,

named for the two mathematicians that developed the theory. In con-

trast to explicit resource competition (including R*-theory), the nature

of the competition (resources or aggressive interactions) is implicit,

because we only track population sizes of the two competitors and

their e↵ect on each other, and we don’t define the biological details of

the competition. In this way, it is a generalized form of competition.

Note that each population has its own intrinsic growth rate (r1, r2)

and carrying capacity (K1, K2).

Strength of competition

We see from equations 3 that population N1 is negatively impacted by

itself (intraspecific competition) and by population N2 (interspecific

competition), because in the parentheses the N1 and N2 terms are

negative, meaning if either N1 or N2 becomes large, this acts to reduce

the population growth rate of N1 (the same principle applies to the
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second equation).

The reason we include the a parameters, is to provide some flex-

ibility about how we describe interspecific competition relative to

intraspecific competition. If the a parameters were absent, we would

be stating that the addition of an N1 or an N2 individual to the com-

munity has the same e↵ect on the population growth rate of the focal

species, N1, say. But this doesn’t account for the fact that, on average,

an individual of one species may be more aggressive or a more e�cient

predator.

The a parameters allow us to di↵erentiate the competitive e↵ects

of each species on N1 and N2 and are known as relative-strength-of-

competition parameters. The subscript indices of equations 3 are read

backwards, so a12 is the relative e↵ect of an individual of species 2 on

species 1 (relative to the e↵ect of an individual of species 1 on itself).

For example, if it took the presence of 10 individuals of species 2 to

reduce the population growth rate of species 1 by some factor, but it

only took 1 individual of species 1 to achieve the same e↵ect, then the

relative-strength-of-competition parameter would be a12 = 1/10. In
such cases where a < 1, we conclude that interspecific competition

is weak relative to intraspecific competition. If the opposite situation

were observed (10 conspecifics had the same competitive e↵ect as 1

heterospecific individual) then we would use a12 = 10, and conclude

the interspecific competition is strong relative to intraspecific competi-

tion.

Phase-plane analysis

We can consider the two population equations dN1/dt and dN2/dt

graphically to better understand how competition will play out. First,

if we separately consider each population at equilibrium (dN1/dt = 0
and dN2/dt = 0) we note that rather than getting a single value (like

N = K in the case of logistic growth of a single population) we instead

get a line (a relationship between N1 and N2). For example, when we

separately assume N1 is at equilibrium (dN1/dt = 0) we have:

0 = r1N1

✓
K1 � N1 � a12N2

K1

◆
(4)

We’re not particularly interested in the special case where the whole

community is extinct (i.e., N1 = 0, N2 = 0 is an equilibrium, but

not one in which we can learn much about competition). Instead, we’ll

focus on the parentheses equating to 0:
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0 =

✓
K1 � N1 � a12N2

K1

◆
(5)

0 = K1 � N1 � a12N2 (6)

This is the equation of a straight line. We can make this clearer, by

preparing to plot N1 on the x-axis and N2 on the y-axis. Our generic

straight line has the form y = mx + b, and here our y is going to be

N2, so we have to rearrange our equation accordingly:

N2 =
K1 � N1

a12
(7)

This line (called a zero net growth isocline - or ZNGI) intercepts the

x-axis at N1 = K1 (i.e., x-axis intercept is found by setting N2 = 0).
Similarly, it intercepts the y-axis at K1/a12 (i.e., the y-axis intercept

is found by setting N1 = 0). The line is illustrated in Fig. 4 (blue

line). Remember, this ZNGI line is derived by setting dN1/dt = 0
so it tells us that on this line, the N1 population doesn’t change (it

doesn’t tell us anything about the N2 population). The line divides

the N1 � N2 plane into two halves. As the N1 population is measured

on the x-axis, we can ask, what happens to N1 when it is to the left

of the ZNGI and what happens when it is to the right of the ZNGI?

To answer this, we can look again at the N1 equation of the original

Lotka-Volterra equations (equations 3). The sign of this equation is

determined by the parentheses; if K1 dominates, it will be positive

and if �N1 � a12N2 dominates, it will be negative. The ZNGI is the

knife-edge, where the expression is exactly 0. If N1 increases, then the

balance will shift from =0 to <0 because N1 appears as a negative

term in the parentheses. This means the N1 population will decrease,

because dN1/dt changes from =0 to <0. We can indicate this with

arrows (Fig. 4, blue left-pointing arrows). Similarly, if N1 decreases

(i.e., is to the left of the ZNGI), then dN1/dt changes from =0 to >0

and N1 will increase in size. Again, we can indicate this with lines and

arrows (Fig. 4, blue right-pointing arrows).

The same logic, from sketching the N2 ZNGI line to evaluating

what happens when N2 is away from the line, can be applied to the N2

equation. Because N2 is plotted on the y-axis, we refer to change in

the up-down direction. Its ZNGI is illustrated in Fig. 4 (red line) with

associated arrows showing predicted changes to N2, when away from

the ZNGI.

Because the Lotka-Volterra competition equations (3) are cou-

pled (N2 appears in the dN1/dt equation and vice versa), we need to

put the N1 and N2 ZNGIs in one phase-plane to understand how the

populations are predicted to interact, and establish the outcome of

competition.
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Figure 4: Phase-plane analysis for
the Lotka-Volterra equations showing
ZNGIs for N1 (blue) and N2 (red).
The arrows illustrate how each pop-
ulation would move when away from
the ZNGI.

Depending on the magnitude of K1, K2, a12, and a21 there are four

qualitatively di↵erent patterns to describe how the two populations

will interact (Fig. 5, A-D).

We see in Fig. 5 panels A and B that the phase-plane is demarcated

into 3 zones, and in panels C and D the phase-plane is demarcated

into 4 zones. Any starting conditions (initial population sizes of N1
and N2) are defined by a point in the phase-plane. The black arrows

are the resultant e↵ects of combining the appropriate blue and red

arrows in each zone, and describe how the populations N1 and N2 are

predicted to change (move) in time.

A: N1 excludes N2

In Fig. 5, panel A, all starting conditions will eventually drift into the

middle zone which points to bottom-right. The system of interacting

N1 and N2 individuals will eventually reach a state where N2 goes

extinct and N1 goes to its carrying capacity (K1). The co-existence

equilibrium is unstable.

B: N2 excludes N1

In Fig. 5, panel B, again all starting conditions will eventually drift

into the middle zone which points to left. The system of interacting

N1 and N2 individuals will eventually reach a state where N1 goes

extinct and N2 goes to its carrying capacity (K2). The co-existence
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Figure 5: Four qualitatively di↵erent
outcomes predicted by the Lotka-
Volterra competition equations. In
each panel, the blue line is the N1
ZNGI and the red line is the N2
ZNGI. The blue and red arrows
indicate predicted population changes
in the N1 and N2 directions, and the
black arrows indicate the resultant
change when the populations interact.
A: N1 excludes N2 and grows to its
carrying capacity, K1; B: N2 excludes
N1 and grows to its carrying capacity,
K2; C: Both species co-exist but
at lower carrying capacities than
they would attain by themselves;
D: One population will go extinct
and the other will go to its carrying
capacity. The winner is determined by
a combination of starting conditions
and ZNGI orientations.

equilibrium is unstable.

C: Stable co-existence

In Fig. 5, panel C, the resultant black arrows all point towards the

central area where the red and blue ZNGI lines cross. This crossing

point is an equilibrium point since it satisfies the ZNGI conditions for

both N1 and N2 (i.e., dN1/dt = 0 and dN2/dt = 0). In this case, the

co-existence equilibrium is stable.

D: Alternative stable states

In Fig. 5, panel D, half of the resultant black arrows point towards the

co-existence equilibrium and half point away. Depending on the start-

ing conditions, the system will eventually move into one of the zones

with arrows pointing away from the co-existence equilibrium. Depend-

ing on which of these two zones the system moves into, the system will

resolve to one in which one species is extinct and the other is at its

carrying capacity. However, the species that wins out is determined by

the starting conditions, just as much as the rules that determine popu-

lation changes. In this case, the co-existence equilibrium is unstable.



9

Interpretation of competition outcomes

Competitive exclusion

In outcomes A and B, one population goes extinct and the other grows

to its carrying capacity. The winning species has the higher ZNGI,

meaning that it has a larger value for both the x- and y-intercepts

compared to the other ZNGI. Broadly, these conditions are likely to

be met if the winning species has a relatively large carrying capacity,

or the winning species has a strong competitive e↵ect on the losing

species (a value), or the losing species has a weak competitive e↵ect

on the winning species. Technically, for winner (W) and loser (L) we

require: K

W

/a
WL

> K

L

and K

L

/a
LW

> K

W

.

Constraint on stable coexistence

We note that in outcome C (stable co-existence), the ZNGIs cross each

other and each population has the higher intercept value on its own

axis. This means that the conditions:

K1 <
K2
a21

(8)

K2 <
K1
a12

(9)

must be met. We can perform a short analysis on these equations,

assuming they are satisfied. If K2 < K1/a12, then we can substitute

something larger on the right hand side, and still respect the inequal-

ity. We know that K2/a21 > K1 so we can swap out the K1 for K2/a21
to get:

K2 <
K2/a21

a12
(10)

which is algebraically equivalent to

K2 <
K2

a12a21
(11)

and cancelling through by K2 we arrive at:

1 <
1

a12a21
(12)

Lastly, when we invert fractions in inequalities we need to reverse the

inequality sign (e.g. 2/1 > 1, but 1/2 < 1), leading to:

1 > a12a21 (13)

This means that the overall e↵ect of interspecific competition must

be less than that of intraspecific competition for stable co-existence
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between the two populations. As often arises in population ecology, we

see that intraspecific competition is a stabilizing force.

Alternative stable states

Of the 4 zones identified in outcome D, the top-left and bottom-right

zones (Fig. 5 - panel D) will push the system to competitive exclu-

sion (of N1 and N2, respectively). The key to understanding which

outcome is more likely then, revolves around understanding which

of those two zones the system will first encounter (assuming it starts

in neither). Of those other 2 zones, in the top-right zone, the system

moves towards the origin, and in the bottom-left zone it moves away

from the origin. We see that for starting conditions where N2 > N1,

there is a higher chance that N2 wins (and vice versa for N1). How-

ever, this is only a guideline. The exact positions of the ZNGIs (de-

termined by K1, K2, a12, and a21) and the starting conditions together

determine the final outcome.

Application of theory - competition between crab species

The shore crab invasion has been su�ciently well-studied that impor-

tant components of the Lotka-Volterra model for green crab vs. shore

crab competition may be qualitatively estimated (Fig. 3 and Fig. 6).

Figure 6: Estimates of handling
time and searching e�ciency for
Carcinus maenas and Hemigrapsus
sanguineus at di↵erent predator
densities. Measurements were made in
single-species experimental mesocosms
(Gri�n and Delaney 2007)
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Fig. 3 tells us important information about the observed carrying

capacities of each species, and Fig. 6 allows us to estimate the likely

magnitudes of the a parameters. We leave it as an exercise for you

(Homework question 1) to put these pieces of information together to

evaluate the likely outcome of this competition as predicted by the

Lotka-Volterra competition theory.

Homework

1. Articulate what you think the outcome of competition will be be-

tween green crabs and shore crabs on the east coast of the US. You

should draw on evidence from Figs. 3 and 6 and make use of the phase

plane analysis in this chapter to decide between outcomes A-D.

2. True or False: The Lotka-Volterra competition model predicts

that coexistence between two competing species requires that overall,

interspecific competition must be less than intraspecific competition.

3. Which of the following are potential outcomes of competition

based on Lotka-Volterra theory? (circle ALL that apply)

(a) One species goes extinct, while the other goes to its carrying

capacity

(b) Both species coexist at the same carrying capacities they would

achieve in the absence of competition

(c) Outcomes may depend on initial population sizes

(d) Both species coexist at lower carrying capacities than they would

achieve in the absence of competition

(e) Both species go extinct

4. In eastern Africa, lions and hyenas are in competition with one

another. For the lion, K1 = 75 and for the hyena, K2 = 300. Compe-

tition parameters are a12 = 0.4 and a21 = 0.8 (where a12 represents

the e↵ect of species 2 on species 1). Suppose the initial population

sizes at a site are 50 lions and 75 hyenas. Plotting lion abundance

on the x-axis, and hyena abundance on the y-axis, plot the isoclines

(ZNGIs) for each species, and plot these initial population sizes paying

attention to details such as intercepts on the x and y-axis and accurate

placement of initial conditions. Predict the short-term dynamics of

each population and the final outcome of interspecific competition.

Glossary

• Conspecific - individual of the same species
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• Explicit - implied though not plainly expressed

• Handling time - the amount of time it takes a predator to handle its

prey, beginning from the time the predator finds the prey item to

the time the prey item is eaten

• Heterospecific - individual of a di↵erent species

• Implicit - stated clearly and in detail, leaving no room for ambigu-

ity

• Mescosm - an outdoor experimental system that examines the natu-

ral environment under controlled conditions

• Origin - reference point in a graph defined by x = 0, y = 0

• Phase-plane analysis - graphically determining the behavior of state

variables (incl. population sizes) in the short- and long-term

• Searching e�ciency - the rate at which the predator encounters

prey items per unit of prey density

• Zero net growth isocline (ZNGI) - a line in a phase-plane where the

associated state variable (e.g. population size) does not change

References

Gri↵en, B. D., and Delaney, D. G. 2007. Species Invasion Shifts the

Importance of Predator Dependence. Ecology 88 (12): 3012-21


	General competition
	Key concepts
	A recent invasion of shore crabs
	Lotka-Volterra competition
	Strength of competition
	Phase-plane analysis
	Interpretation of competition outcomes
	Application of theory - competition between crab species
	Homework
	Glossary
	References


