Population Growth \& Decline

Quiz

Discrete time models for population growth and decline

Continuous time models

Counter example

Conclusion

Quiz

What is the difference between an open and a closed population?
(A) An open populations is affected by only reproduction, whereas a closed population is affected by reproduction and mortality
(B) An open population is subject to immigration and emigration, whereas a closed population is not
(C) Closed populations never experience reproduction, whereas open populations do
(D) A closed population is at it's maximum size, whereas an open population has room to grow

Grizzly Bear

Ursus arctos horribilis

Recovery of Grizzly Bear population in Greater Yellowstone ecosystem

Additional regulations introduced

Questions about growth and decline

(1) How much change in mortality was required to shift the balance from decline to growth?
(2) If interventions had not been undertaken, would the population have gone extinct? When?
(3) Is the population safe now? What is the chance that it might still go extinct?

What causes growth and decline?

Four key demographic processes:
Closed populations include only
(1) Reproduction (+)
(2) Mortality (-)

Open populations are also subject to
(3) Immigration (+)
(4) Emigration (-)

Modeling demography

The fundamental equation of population ecology:

$$
\begin{equation*}
\Delta N=N_{t+1}-N_{t}=B_{N}-D_{N}+I_{N}-E_{N} \tag{1}
\end{equation*}
$$

Three additional assumptions
(1) Population is closed
(2) No heterogeneity (differences among individuals)
(3) No density dependence $\left(B_{N}=B N_{t} ; D_{N}=D N_{t}\right)$

$$
\begin{equation*}
\Delta N=N_{t+1}-N_{t}=B N_{t}-D N_{t}+X X_{1}-N_{1} \tag{2}
\end{equation*}
$$

Modeling demography

Starting with

$$
\begin{equation*}
\Delta N=N_{t+1}-N_{t}=B N_{t}-D N_{t}+Y_{1}-E \mathcal{N}_{1} \tag{3}
\end{equation*}
$$

We can rearrange to a recursive formula:

$$
\begin{equation*}
N_{t+1}=B N_{t}-D N_{t}+N_{t} \tag{4}
\end{equation*}
$$

Defining $\lambda=B-D+1$, we simplify to

$$
\begin{equation*}
N_{t+1}=\lambda N_{t} \tag{5}
\end{equation*}
$$

The symbol λ is the Greek letter lambda and denotes the discrete time population growth rate or reproductive multiplier

Generalizing to more than one time step

Starting with

$$
\begin{equation*}
N_{t+1}=\left(B N_{t}-D N_{t}+1\right) N_{t}=\lambda N_{t} \tag{6}
\end{equation*}
$$

We also have

$$
\begin{equation*}
N_{t+2}=\left(B N_{t}-D N_{t}+1\right) N_{t+1}=\lambda N_{t+1} \tag{7}
\end{equation*}
$$

Inserting the first equation into the second, we have

$$
\begin{equation*}
N_{t+2}=\lambda \lambda N_{t}=\lambda^{2} N_{t} \tag{8}
\end{equation*}
$$

In general,

$$
\begin{equation*}
N_{t}=\lambda^{t} N_{0} \tag{9}
\end{equation*}
$$

Geometric growth and decline

What does the equation $N_{t}=\lambda^{t} N_{0}$ look like?

Estimating λ from data

$$
\begin{align*}
N_{t} & =\lambda^{t} N_{0} \\
N_{t} / N_{0} & =\lambda^{t} \\
\log \left(N_{t} / N_{0}\right) & =\log \left(\lambda^{t}\right) \\
\log \left(N_{t} / N_{0}\right) & =t \log \lambda \tag{10}\\
\frac{\log \left(N_{t} / N_{0}\right)}{t} & =\log \lambda \\
e^{\frac{\log \left(N_{t} / N_{0}\right)}{t}} & =\lambda
\end{align*}
$$

Problem
Given that the Yellowstone Grizzly population was 44 in 1959 and 34 in 1975, what was the average annual reproductive ratio during this period?

Challenge Problems

Problem

Given $N_{0}=3, N_{1}=4, N_{2}=6$ and using our equation we have an estimate of $\lambda=1.414$, but this discards some of the information. What information is discared? How can this information be used? What is the new estimate?

Problem
At what values of λ and/or N is the system at equilibrium?

Growth and decline of Spiny water flea

Bythotrephes longimanus

Growth and decline of Spiny water flea

Spiny water flea invasion of Harp Lake, Ontario

Bythotrephes in Harp Lake (1998)

Life cycle of Spiny water flea is continuous

Instantaneous population growth

An alternative form of the fundamental equation of population ecology

$$
\begin{equation*}
\frac{d N}{d t}=b N-d N+i-e \tag{11}
\end{equation*}
$$

For now, we assume a closed population and define the intrinsic rate of increase: $r=b-d$

$$
\begin{equation*}
\frac{d N}{d t}=b N-d N=(b-d) N=r N \tag{12}
\end{equation*}
$$

Solution

$$
\begin{aligned}
\frac{d N}{d t} & =r N & & \\
\frac{1}{N} d N & =r d t & & \text { Separation of variables } \\
\int \frac{1}{N} d N & =\int r d t & & \text { Integrate } \\
\log N & =r t+C & & \text { General solution } \\
e^{\log N} & =e^{r t+C} & & \text { Algebra } \\
N & =e^{r t} e^{C} & & \\
N & =A e^{r t} & & \text { What is } A ?
\end{aligned}
$$

Solution

$$
\begin{aligned}
N & =A e^{r t} \\
N_{0} & =A e^{r(0)} \\
N_{0} & =A
\end{aligned}
$$

So...

$$
N_{t}=N_{0} e^{r t}
$$

\leftarrow Remember this

Exponential growth and decline

What does the equation $N_{t}=N_{0} e^{r t}$ look like?

A comparison of discrete- and continuous-time growth and decline

Discrete time

Continuous time

The relationship between discrete and continuous growth

Solution for one year
Define λ in terms of r
Taking logarithms
$N_{t}=N_{0} e^{r t}$
$\lambda=e^{r t}=e^{r}$
$\log \lambda=r$

A counter-example: Muskox on Nunivak Island

Ovibos moschatus

Reintroduction of Muskox on Nunivak Island

- Extirpated in the $19^{\text {th }}$ century
- 31 animals introduced in 1936 by USFWS
- ≈ 651 animals in 1970

Reintroduction of Muskox on Nunivak Island

Time series of Muskox abundance on Nunivak Island Source: USFWS

Reintroduction of Muskox on Nunivak Island

Annualized growth rates of Muskox abundance on Nunivak Island Source: USFWS

Key points

- Fundamental equation (know this)
- Open (including reproduction/mortality/immigration/emigration)
- Closed (just reproduction/mortality)
- Change in population size depends on current size (N) and growth rate (r or λ)
- Three possible outcomes depending on growth parameter
- $\lambda>1$ or $r>0$ (N increases)
- $\lambda=1$ or $r=0$ (N remains constant)
- $\lambda<1$ or $r<0$ (N decreases)
- Estimation - Student should be able to estimate λ or r from time series data
- Prediction - Student should be able to extrapolate a fit model to make a prediction about the population size at a future time

Homework

- Complete all six homework questions from Chapter 1
- Answers can be typed or scanned and submitted via Dropbox
- Due: Tuesday, August 28 at 5:00pm

