Quiz1: For each statement, write True or False e.g. A: True, B: True

A: intrinsic growth rate for "gray" population > intrinsic growth rate for "blue" population B: "blue" population is more resilient than "gray" population

Ovibos moschatus

Muskox exhibiting social defense behavior

- Related to goats and sheep
- Large-bodied herbivore
- -200 cm in length
- -285 kg in weight
- Migrated to North America during Pleistocene (contemporary of Wooly Mammoth)

Muskox population growth (1936-1968)

- Extirpated in 19th c.
- 31 animals introduced in 1936 by USFWS
- ~650 animals in 1970

 $e^{\frac{\log(N_t/N_0)}{t}} = \lambda$

- (1) Estimate year-to-year growth rate from formula derived in first class
- (2) Average estimated growth rate is λ =1.15
- (3) Plot alternately against time and population size

How many muskox do you suppose there are on Nunivak Island now?

Two ways to compare the model and observations

What do these plots say about Muskox population dynamics?

Density dependence

Relationship between population size and per capita birth rate/per capita death rate could be linear or nonlinear

Adding density dependence

Define λ as a function of N and substitute for the old constant growth rate $N_{t+1} = \lambda \{N_t\}N_t$

Recall: In the first lecture λ was defined by $\lambda = B - D + 1$

Note: It may no longer be easy (or even possible) to find a general expression for N_t . But, we can always iterate the model on a computer.

What function should we use?

Three models for density dependence

How do these models differ? What do solutions of these models looks like? (What do we mean here by "solutions"?)

Solutions of these models

How are these trajectories different from density-independent growth?

- Growth is *bounded* (a necessary condition for *regulation*)
- Population size reaches a carrying capacity

Equilibrium

Carrying capacity is a special case of *equilibrium*

What is an equilibrium?

Challenge question: What are the carrying capacities of our three models of density dependent dynamics?

Practice question (previous exam question)

Consider a population with density-dependent growth given by the Beverton-Holt model with growth rate ,

$$\lambda(N) = \frac{R}{1 + aN_t}$$

parameters R=2.3, and a=0.005, and initial population size $N_0=80$. What will the population size be after 2 years (i.e. what is N_2)? What is the carrying capacity of this population? Is the carrying capacity stable?