
Metapopulation dynamics

Key concepts

� Patch occupancy

� Two-patch dynamics

� Levins metapopulation model

� Mainland-island metapopulation model

� Metapopulation meltdown

Introduction

We begin this chapter with the observation that species are not ubiq-

uitously distributed. Does population ecology have an explanation for

this?

Figure 1: The Glanville fritillary

butterfly (Melitaea cinxia).

The models we have studied so far allow that a species may not

persist in environments where its fitness is low, for instance where

the intrinsic rate of increase is less than one. In such cases extinction

is the stable state. Of course, habitat (which we may define as envi-

ronmental conditions such that r > 0) is not uniformly distributed.

For instance, the Glanville fritillary butterfly (Melitaea cinxia) is

widely distributed across Europe and Asia, but reproduces only in

open meadows. In the Åland islands of Finland the Glanville fritil-

lary is found only in small meadows containing one or both of two

plant species, Plantago lanceolata and Veronica spicata, which serve

as hosts to the butterfly in its larval stage.1 Due to the small size of 1 I.A. Hanski. Eco-evolutionary spatial
dynamics in the Glanville fritillary

butterfly. Proceedings of the National

Academy of Sciences of the United
States of America, 108(35):14397–404,

2011

these meadows, populations of the Glanville fritillary are routinely ex-

tirpated and the species exists in a delicate balance between extinction

and recolonization from other patches (Figure 2). Thus, for instance,

among ≈ 1600 meadows surveyed since 1993 and known to be suitable

for growth and reproduction, in any given year only between about

320 and 640 meadows are occupied by the butterfly. That is, the patch

occupancy of the Glanville fritillary butterfly is between 20% and 40%.
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The aim of this chapter is to understand such cases of partial habitat

occupancy.

Two-patch models

A first step toward understanding the dynamics of species that move

among patches is to consider a population comprised of two linked

patches. For instance, we may assume that the dynamics in the in-

dividual patches are governed by logistic-like density dependence,

coupled together by a small amount of migration. Thus, we have the

following system of coupled equations

dn1/dt = n1r1(1− n1/k1)− εn1 + εn2 (1)

dn2/dt = n2r2(1− n2/k2)− εn2 + εn1. (2)

In this model n1 and n2 are the sizes of the populations in patches 1

and 2 respectively and ri and ki are the intrinsic rate of increase and

carrying capacity of the ith population; ε is a migration rate. Holt2 2 Robert D Holt. Population dynamics
in two-patch environments: some

anomalous consequences of an optimal
habitat distribution. Theoretical

Population Biology, 28(2):181–208,

1985

has studied this model in detail, including versions that allow for very

different kinds of density dependence.

We will first investigate this model graphically. To begin we plot

the nullclines. Recalling that an equilibrium of the system is a state

in which the rate of change in zero, we alternately set the two equa-

tions to zero and solve for n2 in terms on n1. The resulting curves

(Figure 3) are the set of points at which each of the equations in 1 is

equal to zero. Where they intersect both equations are at zero and the

population as a whole is at equilibrium. For comparison, the carrying

capacities of the patches considered in isolation are plotted as dashed

lines.
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Figure 2: Colonization-extinction
balance in The Glanville fritillary

butterflies of the Åland Islands. (A)
Metapopulation size is sometimes

quantified as the number of larval

groups where meadows may contain
from 1-150 larval groups, each of

which is the result of a single clutch of

eggs. (B) Number of extinctions and
colonizations among ≈ 1600 surveyed

meadows in 1993-2010. (C) Extinc-

tions and colonizations from (B)
plotted against patch occupancy for

the same period. (Figure reproduced

from Hanski (2011).)
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Figure 3: Nullclines of the two-patch
model given by equations 1. Black

designates the nullcline of n1 while

blue designates the nullcline of n2.
The dashed lines show the corre-

sponding carrying capacities. Since

the sizes of the coupled populations
at equilibrium are given by the inter-

section of the solid lines, which lies

to the left of the carrying capacity
for patch 1 and abive the carrying

capacity for patch 2, we conclude that
in this population dispersal causes

the abundance in patch 1 to be less

than would occur if the patch existed
in isolation while the abundance in

patch 2 is greater than would occur

if the patch existed in isolation. The
arrows show the net direction that

the dynamics will take in the four

regions delineated by the intersecting
nullclines. Parameters used in this

example are r1 = 1, r2 = 2, k1 = 500,

k2 = 300, and ε = 1.

In the special case of high dispersal (technically the ε → ∞ limit),

the equilibrium sizes of the two populations are equal:

n∗1 = n∗2 = n∗ =
r1 + r2

r1/k1 + r2/k2
. (3)

The size of the two populations together is just

n∗total = 2n∗ = 2(r1 + r2)/(r1/k1 + r2/k2). (4)

How is this different than if there had not been any migration between

the two populations? To answer this question we recognize that if

ε = 0 the equations in 1 become decoupled logistic models with equi-

librium sizes n∗1 = k1 and n∗2 = k2 for a total of k1 + k2. The difference

in total population size as a result of dispersal may then be calculated

as

k1 + k2 − n∗total =
(k1 − k2)(k1r2 − k2r1)

k1r2 + k2r1
. (5)

This equation is zero if k1 = k2 because the first term in the numera-

tor will be zero. This means that if the carrying capacities of the two

patches are identical, then dispersal has no effect on the total popu-

lation size. Additionally, if r1/k1 = r2/k2 then the second term in

the numerator will be zero and the carrying capacity of the coupled

populations will be identical to the sum of the carrying capacities of

the isolated populations. Since the per capita growth rate in a logistic

model may be written as

1
n

dn
dt

= r− r
k

n, (6)

we see that the effect of density dependence is to reduce the intrinsic

rate of increase r by a factor r/k. Thus, r/k measures the strength of

density dependence and we conclude that if the strength of density

dependence is equal in both patches then the total carrying capacity

is unaffected by dispersal. What if neither of these conditions holds?

For concreteness, we order the two equations so that k1 > k2. Then,

from equation 5, if r2/k2 > r1/k1 the decoupled populations will

have a greater total size than those coupled by dispersal. That is, if

the strength of density dependence is greater in the population with a

smaller carrying capacity, then dispersal reduces the overall population

size. By contrast, if r2/k2 < r1/k1 the effect of dispersal is to increase

the total population size. In conclusion, rapid dispersal causes the

average size of the two populations (n∗total/2) to tend toward the

carrying capacity of the patch with stronger density dependence. If

this is the patch with the greater carrying capacity, dispersal acts
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to increase abundance overall. If this is the patch with the smaller

carrying capacity, dispersal acts to decrease abundance overall.

Classical metapopulation dynamics

In this section we seek to “scale up” from the two-patch model de-

veloped in the preceding section to consider the dynamics of a pop-

ulation on an arbitrary number of patches. Unfortunately, it is not

feasible to simply add more equations to the existing system of two

equations. Some simple calculations show why. In general, if the dy-

namics of a population in one patch require one state variable and h
parameters, then the analogous models for an v-patch model will re-

quire v state variables and h × m parameters resulting in a total of

v + vh = v(h + 1) quantities overall. Even if we could solve all these

equations (for instance, using a computer) the result would be so com-

plicated that it would yield little insight. Besides, such an approach

tracks a great deal more information than we actually require. To

show why, we make a few assumptions for a species that has the kind

of patchy distribution exemplified by the Glanville fritillary butterfly:

� Colonization and extinction of patches is slow compared with the

growth of a population in a patch; this means that occupied patches

will typically be very close to carrying capacity.

� The average carrying capacity among the v patches is k.

� Population colonization and extinction are not related to properties

of the patch, including current population size.

Denoting the number of occupied patches by u, if these assumptions

hold, then to a first approximation the total abundance of the popu-

lation is (u/v)k. What’s more, for patchily distributed species we are

often less concerned with the total abundance than with the number

of populations. Finally, patch occupancy, which we will designated by

p = u/v, will be much more sensitive to factors affecting coloniza-

tion and extinction than to the growth parameters govering dynamics

within a population. Clearly, a different approach will be needed to

scale up to the metapopulation level.

The approach we take here was first introduced by Levins.3 A 3 R Levins. Some demographic and

genetic consequences of environmental
heterogeneity for biological control.

Bulletin of the Entomological Society
of America, 15(3):237–240, 1969

graphical depiction of the Levins metapopulation model is shown in

Figure 4. Our objective is an equation for the change in patch occu-

pancy (p) with respect to time. Unoccupied patches (of frequency

v − u) become occupied through colonization. Occupied patches be-

come unoccupied through extinction. We denote the per patch extinc-

tion rate by the parameter γ. Since this rate applies on a per patch

basis, to calculate the overall rate of extinction in the population we
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multiply by the number of occupied patches u yielding total extinc-

tion rate γu. Finally, since extinction reduces patch occupancy, the

sign on this rate is negative. To derive the colonization rate, we first

denote the per patch production of migrating individuals by m. The

total production of migrants over all u occupied patches is therefore

mu. Colonization by these migrants after dispersal requires that they

arrive at an unoccupied patch. Thus, for instance, as patch occupancy

gets large finding a vacant patch gets harder and harder. If we assume

that migrants arrive at patches irrespective of their occupancy status,

then the rate of colonization will be proportional to the fraction of un-

occupied patches available to be colonized. Thus, colonization occurs

at rate mu(1− u/v) Together, these considerations give rise to the

following equation:

du
dt

=

colonization︷ ︸︸ ︷
mu
(

1− u
v

)
− γu︸︷︷︸

extinction

. (7)

Conventionally, we recast this equation in terms of the patch occu-

pancy p = u/v). Dividing both sides of equation 7 by the total num-

ber of patches v we have

1
v

du
dt

= m
u
v

(
1− u

v

)
− γ

u
v

, (8)

which, on recalling our definition of p, may be written as

dp
dt

= mp(1− p)− γp. (9)

Figure 4: Spatial structure of a classi-

cal metapopulation. Occupied patches
are represented in blue and vacant

patches are represeted in red.

Setting equation 9 to zero and solving for p obtains the equilibrium

patch occupancy:

mp(1− p)− γp = 0 (10)

mp(1− p) = γp (11)

m(1− p) = γ (12)

1− p = γ/m (13)

p∗Levins = 1− γ/m. (14)

From this equation we can draw two immediate conclusions:

� Since this equation can only equal 1 if γ/m = 0 we conclude that at

equilibrium not all sites are occupied unless γ = 0.

� For persistence (p∗ > 0), m must be greater than γ
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Evidently, persistence in such a “classical” metapopulation depends

on the delicate balance between extinction and colonization. This is

because the entire population exhibits a tentative existense, shifting

from patch to patch in a wave of colonization seeking to outrun the

tide of extinction that inevitably follows – just as has been observed to

occur in the Åland metapopulation of the Glanville fritillary butterfly.

Mainland-island metapopulation dynamics

Not all patchy populations are so precariously positioned. A variation

on this model, the mainland-island model, supposes that in addition

to the ephemeral patches there exists one or more robust populations

(Figure 5). By assumption, these populations are large, justifying two

additional assuptions:

Figure 5: Spatial structure of a

mainland-island metapopulation.
Occupied patches are reprsented in

blue and vacant patches are repre-

seted in red.

� Extinction of the mainland population is so unlikely that it may be

ignored.

� Production of propagules by the mainland population is so great

that this propagule rain swamps migration from the patch popula-

tions.

If these assumptions hold, then we may replace the term mp in equa-

tion 9 by a constant colonization rate c, yielding

dp/dt = c(1− p)− γp. (15)

This equation is to be interpreted with respect to occupancy only of

the patches. That is, the mainland isn’t considered in the fraction p.

Setting equation 15 to zero and solving for p obtains the equilibrium

patch occupancy:

c(1− p)− γp = 0 (16)

c− cp = γp (17)

c = cp + γp (18)

c = p(c + γ) (19)

p∗Mainland-island = c/(c + γ). (20)

From this equation we can draw two immediate conclusions:

� At equilibrium, not all sites are occupied unless γ = 0.

� The population persists for all c > 0.

Evidently, only a classical metapopulation may go extinct. However,

both classical and mainland-island metapopulations may be far from

fully occupied.
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Application

What are the implications of metapopulation theory for conservation

practice? The main implication is that populations exhibiting a clas-

sical metapopulation structure require vacant patches for persistence.

That is, just because a patch isn’t currently occupied does not imply

that it is unimportant to the persistence of the species. It may be im-

portant as a site for colonization and subsequent propagation as other,

currently occupied sites, face extinction. Consider what happens in a

metapopulation when vacant sites are investigated for the presence of

species of conservation concern and then permitted for development if

the species is not recorded. Starting with some large number of pop-

ulations, say v0 = 1000, only a fraction of them, p∗, are occupied. Of

the remaining 1000× (1− p∗) unoccupied patches some fraction α < 1
are removed from the metapopulation. Now the entire patch system

consists of v1 = 1000− 1000(1− p∗)α = 1000(1− α + αp∗) patches.

Over time the metapopulation re-equilibrates and now v1(1 − p∗)
patches are occupied. Again the metapopulation is censused and a

fraction α are removed from the metapopulation, yielding a total of

v2 = v1(1 − α + αp∗) patches. In the long run the result is com-

plete metapopulation meltdown as vacant patches are removed and

the metapopulation re-equilibrates in repeated bouts of colonization,

extinction, and removal. Assuming that metapopulation dynamics are

sufficiently fast that equilibration occurs within each bout of patch

removal we may write down a difference equation for the number of

occupied patches in the metapopulation,

ut+1 = p∗vt = vt(1− α + αp∗)p∗, (21)

with general solution

ut = (1− α + αp∗)tv0 p∗. (22)

This result is plotted in Figure 6 for various values of p∗ and α.

For conservation, this means that evaluations of environmental

impact should consider not only the species present but also those

species in the larger region that may intermittently depend on habitat

at the site for long-term persistence. This consequence holds only for

classical metapopulations, not mainland-island metapopulations, which

persist because of the robustness of the mainland metapopulation

and will continue to persist as long as the mainland population is a

reliable source of propagules regardless of how many satellite patches

are removed from the population.
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Figure 6: Metapopulation meltdown

from removal of unoccupied patches
for v0 = 1000 total patches and

(p∗ = 0.8, α = 0.25) in blue, (p∗ = 0.8,

α = 0.75) in orange, (p∗ = 0.3,
α = 0.25) in black, and (p∗ = 0.3,

α = 0.75) in green.

Test yourself

� A species exhibits a metapopulation structure if its occupancy

depends on the balance of and .

� How does the carrying capacity of a two-patch system differ from

the sum of the carrying capacities of the component patches?

� What is the condition for a metapopulation to be fully occupied?

� What is a metapopulation meltdown and how does this occur?

Homework

1. Sketch nullclines for a two-patch model with very small ε and very

large ε. How do these plots differ from Figure 3

2. Sketch the curves describing eqilibrium patch occupancy of the

classical and mainland-island metapopulations (equations 10 and

16). How does patch occupancy depend on such parameters as m,

γ, and c?

3. Are the data in Figure 2 more consistent with a classical or mainland-

island metapopulation model?
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