
Why do populations go extinct?

Key concepts

� Stochastic and deterministic models

� Demographic and environmental stochasticity

� Gillespie’s direct method

� Population viability analysis

Extinction
Figure 1: The grizzly bear (Ursus

arctos) was listed as “threatened”
according to the Endangered Species

Act on 1973. Since the early 1980s
populations have grown significantly

and in 2013 the Yellowstone Ecosys-

tem subcommittee and Interagency
Grizzly Bear Study Team recom-

mended that grizzly bears be removed

from Threatened status.

Extinction is a fundamental ecological process. For instance, for

species that exhibit a metapopulation spatial structure, the species

distribution and overall occupancy of habitats is determined by a bal-

ance between local extinction and recolonization1. At the community

1 I Hanski. Metapopulation dynamics.

Nature, 396(4):41–49, 1998

level, the theory of island biogeography2 and neutral theory of bio-

2 R H MacArthur and E O Wilson.

The theory of island biogeography,
volume 1 of Monographs in population

biology. Princeton University Press,

1967

diversity3 both take the extinction of populations as a fundamental

3 Gottfried Jetschke. The Unified
Neutral Theory of Biodiversity and

Biogeography, volume 83 of Mono-
graphs in Population Biology. Prince-

ton University Press, 2002

process in the regulation of local species richness. Finally, at the global

scale, the current number of species on earth is the outcome of eons

of speciation and extinction and the corresponding balance between

them4. The contemporary “extinction crisis” refers to the global accel-

4 Sean Nee. Birth-Death Models in
Macroevolution. Annual Review of

Ecology, Evolution, and Systematics,
37(1):1–17, 2006

eration in extinction rates due to human activities5.

5 John H Lawton and Robert M May.
Extinction Rates. Oxford University

Press, Oxford, 1995

Why do populations go extinct? Can the lifetime of a population be

predicted? What is the chance that a particular population will per-

sist until some time in the future? Models studied so far do not admit

answers to these questions. Rather, they allow only that a population

may increase in size until it reaches the carrying capacity of the envi-

ronment or else decline asymptotically toward extinction without ever

quite reaching it. Our goal in this chapter is to understand extinction

as the outcome of a stochastic process and to understand the sources

of stochasticity that lead to extinction.
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North American grizzly bear in the Greater Yellowstone Ecosys-

tem

Yellowstone National Park, an 8,983 km2 area in the state of Wyoming,

was established as the first National Park in the world by an act of the

US Congress in 1872. The Greater Yellowstone Ecosystem had by then

become well known for both its geothermal activity and wildlife, in-

cluding American bison, grey wolves, and grizzly bears. By the early

1900s, Yellowstone National Park had become a major tourist des-

tination. Grizzly bears (Ursus arctos horribilis), particularly are an

iconic species in the Greater Yellowstone Ecosystem and for many

years had been permitted to feed at garbage dumps associated with

the parks camps, habituating the bears to human presence and leading

to human-animal encounters that were often lethal for the animals.

During the middle part of the 20th century, censuses of adult female

bears showed the population to be declining and in 1963 the National

Parks “Leopold Report” recommended the preservation of natural

ecological interactions, including interactions between predators and

prey. In 1967, the park began closing the garbage dumps. In 1975 the

species was listed as threatened under the US Endangered Species Act

and further protections were put in place in 1983.

Estimates of the adult female population size from 1955 to 1997 are

recorded in Table 1 and plotted in Figure 2. Clearly, there is evidence

that the population was declining prior to the closing of the dumps

and species listing and one suspects that the reversal of this trend was

in fact a result of these policies. Suppose, however, that the National

Park Service and Fish and Wildlife Service had not acted when they

did. How long would the Greater Yellowstone population have per-

sisted? Further, population growth from its minimum of N = 33 (in

1973) to its maximum of N = 99 (in 1997) is encouraging, but is it

enough. Given the history of observations from 1973 to 1997, what can

be said about the chances of long term persistence? These and other

questions all require that we develop a theory of stochastic population

extinction.

Types of stochasticity

The models introduced up to this point have all been determinis-

tic, meaning that the equations for change and initial conditions to-

gether and uniquely determine the future state of the population for

all times. By constrast, a stochastic model is one in which changes in

the state of the population are probabilistic. Reasons for probabilistic

change may be categorized as demographic or environmental. Demo-

graphic stochasticity is a kind of intrinsic “noise” that arises because
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Year (t) Nt Year (t) Nt Year (t) Nt

1959 44 1974 36 1989 65

1960 47 1975 34 1990 74

1961 46 1976 39 1991 69

1962 44 1977 35 1992 65

1963 46 1978 34 1993 57

1964 45 1979 38 1994 70

1965 46 1980 36 1995 81

1966 40 1981 37 1996 99

1967 39 1982 41 1997 99

1968 39 1983 39

1969 42 1984 51

1970 39 1985 47

1971 41 1986 57

1972 40 1987 48

1973 33 1988 60

Table 1: Estimates of the number
of adult female grizzly bears in the

Greater Yellowstone Ecosystem,

1959-1997.

1960 1970 1980 1990

40
50

60
70

80
90

10
0

Female grizzly bears in the Greater Yellowstone Ecosystem

Year

E
st

im
at

ed
 p

op
ul

at
io

n 
si

ze

Dumps closed

ESA listing

Additional regulations

Figure 2: Estimates of the number
of adult female grizzly bears in the

Greater Yellowstone Ecosystem,

1959-1997.
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individuals exhibit differences in reproduction or lifespan. In 1999, the

average number of grizzly bear cubs associated with an adult female

was 1.9, but no litter consisted 1.9 cubs. Rather, most females had

two offspring while some gave birth to only one (or only one survived).

Thus, one point of view holds that the cause of demographic stochas-

ticity is the discreteness of individual members of the population. En-

vironmental stochasticity is extrinsic noise which reflects unpredictable

year-to-year variation in environmental conditions affecting all invidid-

uals similarly. The effects of these two types of noise are different and

these differences are important for understanding extinction.

The simple birth-death process

This section introduces a model for density-independent stochastic

population dynamics in continuous time called the simple birth-death

process. Although the model itself is relatively uncomplicated (it has

only two parameters), its solution requires some effort. This effort is

well rewarded, however, because the result is analytical insight into

stochastic population dynamics in general. Any more complicated

model is typically much less tractable so the general insights obtained

here are especially valuable.

The derivation of the model proceeds as follows. First, as before, let

b be the per capita birth rate and d be the per capita death rate. In

keeping with the principle that demographic stochasticity reflects that

individuals are discrete, we will require that the number of individuals

in the population be an interval, i.e., n ∈ {0, 1, 2, ...}. Additionally, we

will assume that births and deaths in the population depend only on

the size of the population and are otherwise independent of each other.

This means that in any small interval of time h, the probability that

a given individual reproduces is the product p(birth) = bh and the

probability that it dies is p(death) = dh.

Gillespie’s direct method

Individual realizations of this process can be simulated using Gille-

spie’s direct method. The independence assumption implies that this

birth-death process is a continuous time Markov chain. Gillespie’s di-

rect method is a simple algorithm for computing such processes and

comprises two steps.

1. Determine the time that must elapse between the present time and

the time of the next birth or death in the popoulation; we call this

birth or death the “event”. This is a exponential random variable

with mean [n(b + d)]−1.
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2. Determine whether the next event is a birth or death. Births must

happen randomly with a long run frequency of b/(b + d) so that

deaths occur with a long run frequency of 1− b/(b + d).

Some realizations of the simple birth-death process obtained using

Gillespie’s direct methods are show in Figure 3.
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Figure 3: Realizations of the simple
birth-death process using n0 = 5,

b = 1.3, and d = 1. The blue line is

the growth of the mean population
size give by equation 8.

Master equation

Gillespie’s direct method allows us to compute individual realizations

of a birth-death process. Since such realizations are just a sample from

a large set of possible outcomes of this process, they don’t individu-

ally provide much insight. Of course, we can compute a large number

of these solutions and analyze them numerically to determine such

properties as the average growth, the range of possible outcomes, and

frequency of extinction. However, in some cases this approach will be

computationally prohibitive and in general it will not identify sim-

ple relationships between these quantities and the model parameters

should any exist. In this section we see that we also can gain some

general insight. From the assumptions above, we can also write down

the master equation,

pn(t + h) = pn(t)(1− n(b + d)h) + pn−1(n− 1)(bh) + pn+1(n + 1)(dh).
(1)

The left hand side of this equation is read as “the probability the pop-

ulation is of size n at time t + h.” So far we have only said that h is

“small”. To be more precise we will insist this means that at most only

one “event” (a birth or a death) may occur in an interval of duration h.

Then, there are only three ways that the population can be of size n
at time t + h: (1) the population could have been of size n + 1 at time

t and lost one individual through death, (2) the population could have

been of size n− 1 at time t and gained one individual through birth,
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or (3) neither of the first two events occurred since time t and the pop-

ulation was already of size n. The terms on the right hand side of 1,

reading from right to left, are the rates at which these events occur.

By construction these possibilities are mutally exclusive and all the

possible events that may have occurred. Notice that the three events

are weighted by the values n + 1, n, and n− 1 respectively, reflecting

the fact that the rates of birth and death are proportional to the size

of the population at time t. Also, since there is no population size of

-1 we will interpret p−1 as zero.

Now, dividing both sides of 1 by h and letting h → 0, we obtain a

differential equation.

dpn/dt = −(b + d)npn + (n− 1)bpn−1 + (n + 1)d (2)

This equation is similar to the models encountered previously in

that it is a rate of change. However, instead of being the rate of

change of the size of the population it is the rate of change of the

probability that the population is of size n. (One might instead think

of this as a system of an infinite number of equations, one for the

probability that the population is of size 0, a second for the probabil-

ity that the population is of size 1 a third for the probability that the

population is of size 2, etc.)

If the initial population size is n = 1 then p1(0) = 1 and one can

use the method of generating functions to obtain the probability of

extinction6: 6 Eric Renshaw. Stochastic Population
Processes. Oxford University Press,

Oxford, 2011

p0(t) =
d− de−(b−d)t

b− de−(b−d)t
(3)

Since the dynamics are density independent, the probability of extinc-

tion for n0 individuals is just the joint probability of extinction of their

independent lineages

p0(t) =
n0

∏
i=1

d− de−(b−d)t

b− de−(b−d)t
=

(
d− de−(b−d)t

b− de−(b−d)t

)n0

(4)

For b < d we can write this equation as

p0(t) =

(
de−(b−d)t − d
be−(b−d)t − d

)n0

(5)

Taking t→ ∞ we have

p0(∞) =

(
−d
−d

)n0

= 1 (6)

This result says that if the birth rate is less than the death rate (so

the intrinsic rate of increase is less than zero, a condition referred to as
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subcritical), the population goes extinct with probability 1. However,

if b > d (a supercritical population), equation 4 implies that the

ultimate chance of extinction is

p0(∞) =

(
d
b

)n0

. (7)

Since both d and b are positive and d is less than b then d/b and any

power of d/b is a positive number less than one. Populations subject

to demographic stochasticity have a non-zero probability of extinction

for any set of vital rates, even for very large intrinsic rate of increase.

The case where b = d exactly is known as the critical case and is the

knife edge between population growth (on average) and population

decline (on average).

In interpreting this result it is important to keep in mind the origi-

nal assumption that per capita birth and death rates are fixed. There

is no density dependence and this population can grow without bound.

This might seem like a serious limitation. However, the result is still

useful if considered as the chance of “escape” from small to large pop-

ulation size. For populations of large size, extinction via demographic

stochasticity in any meaningful time frame is negligible. The chance

that a population of small initial size reaches such a large size is given

approximately by 7 where b and d are the vital rates at small popula-

tion sizes.

The square root scaling law

Besides providing expressions for the chance of extinction the simple

birth-death process can also be solved for summary quantities such

as the mean and variance in population size7. Specifically, the mean 7 Eric Renshaw. Stochastic Population

Processes. Oxford University Press,
Oxford, 2011

population size is given by

m(t) = n0e(b−d)t (8)

and the variance by

v(t) = n0
b + d
b− d

e(b−d)t(e(b−d)t − 1). (9)

On defining r = b− d we see that the mean of the demographically

stochastic model for density-independent population growth and solu-

tion of the deterministic model dn/dt = rn are equivalent. Further,

we can combine these two expressions to obtain a result that is con-

sistent with a very general property known as the square root scaling

law. The square root scaling law holds that the magnitude of fluctua-

tions in population size due to demogaphic stochasticity scale inversely

with the square root of population size, that is they are proportional
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to 1/
√

n8. Fluctuations in any quantity can be quantified relative to 8 Robert a. Desharnais, R. F.
Costantino, J. M. Cushing, Shan-

delle M. Henson, Brian Dennis, and

Aaron a. King. Experimental support
of the scaling rule for demographic

stochasticity. Ecology Letters, 9(5):

537–547, may 2006

the mean by calculating the coefficient of variation, which is the ratio

of the standard deviation of the fluctuations to the mean. Combining

equations 8 and 9, we have

CV =

√
v(t)

m(t)
≈
√

b + d
b− d

n−1/2
0 =

√
b + d

r
n−1/2

0 . (10)

Thus, we see that the square root law holds for demographically

stochastic populations in growth phase, that the coefficient of pro-

portionality (b + d)/(b − d) is a quantity that relates the absolute

speed of demography to the intrinsic rate of increase, and is itself also

inversely proportional to the intrinsic rate of increase.
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Figure 4: Thirty realizations each of
the birth-death process with n0 = 2
(grey) and n0 = 8; other parameters

are b = 1.3 and d = 1. Box-and-
whisker plots show the distribution of

population sizes after two years.

As an illustration, Figure 4 shows some realizations of the simple

birth-death process with initial population sizes n0 = 2 and n0 = 8.

Not surprisingly, the spread is greater in the population that started

at a larger size, but how does this spread scale relative to the average

population size at the same time? Figure 5 shows the coefficient of

variation in 100 simulations of the birth-death over a wider range of

initial conditions, illustrating numerically what is shos analytically by

equation 10.

Environmental stochasticity

Among the results of our analysis of demographic stochsaticity is a

scaling law (equation 7) for the chance of extinction in a supercritical
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Figure 5: Coefficient of variation in

population size after two years from
100 realizations of the simple birth-

death process with b = 1.3 and d = 1.

The top panel shows the decline in
coefficient of variation as the initial

population size inceases from n0 = 2
to n0 = 256. The bottom panel shows
that this decline follows the inverse

square root rule.

population. Evaluating this equation for some arbitrarily chosen val-

ues of b and d shows that even if the birth rate only slightly exceeds

the death rate, then the chance of extinction for even a very modest

population (say n = 10) is practically zero. Further, as even Darwin

observed, virtually all species produce a prodigious number of propag-

ules, implying also that their intrisnic rate of increase is very large, at

least under reasonably hospitable conditions. Yet, local extinction is

nevertheless an extraordinarily common event in nature, so common

in fact that many species have evolved life histories or dispersal strate-

gies to rapidly recolonize habitat sites vacant due to local extinction.

What, then, is the cause of these extinctions?

One candidate answer to this question is environmental stochastic-

ity, which refers to the fact that the average rates themselves (b and

d in our example) fluctuate through time in a seemingly random way

in response to fluctuations in weather, the presence of other species

with which they interact (e.g., predators), and other changes in the

environment (such as the availability of resources or territories). There

are two causal routes by which environmental stochasticity can elevate

extinction risk. One simple way that environmental stochasticity can

affect extinction risk is analogous to the effect of demographic stochas-

ticity. Just as the birth-death process allows with some probability

(vanishingly small as population size gets large) that the next sequence

of demographic events will all be deaths, the model of environmental

stochasticity allows that there may be runs of “bad” years with low
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growth rates. How much the population suffers from these sequences

will depend on the population size at the start of the sequence. A sec-

ond effect of environmental stochasticity arises because population size

compounds like interest in a bank account. A consequence of com-

pounding is that the long run growth rate of the population is the

geoemtric mean growth rate of the growth rate realized over smaller

intervals,

λ̄g =

(
n

∏
i

λi

)1/n

, (11)

which is not the same as the average (the arithmetic mean),

λ̄a =
1
n

(
n

∑
i

λi

)
. (12)

In fact, it is the antilog of the arithmetic mean of the natural loga-

rithm, i.e.,

λ̄g =

(
n

∏
i

λi

)1/n

= exp

(
1
n

n

∑
i

ln λi

)
(13)

Due to Jensen’s inequality, the geometric mean must always be

less than or equal to the arithmetic mean. It is possible, in fact, that

the arithmetic mean of a sequence of reproductive multipliers may be

greater than one (on average the population grows), while the geomet-

ric mean is less than one (the long run behavior of the population is to

decline). In this sense, the drag on population growth exerted by ran-

dom environmental variation may be sufficiently great even to reverse

the long run direction of the population. One way to express this re-

sult is to say that the average growth of a population in a fluctuating

environment is less than the growth of the average population in that

environment. If the extinction hazard due to demographic stochastic-

ity is not sufficiently large to explain observed extinctions in nature,

perhaps the hazard due to environmental stochasticity is.

Here we seek to add this concept of a fluctuating vital rate to our

theoretical analysis. Previously, we had written nt+1 = bnt − dnt + n +

t as a recursive equation for population size in discrete time. Now we

modify this expression slightly

nt+1 = btnt − dnt + nt (14)

to allow that the parameter b is itself a Gaussian random variable with

mean b and variance σ2. Equivalently, we can write the model as

nt+1 = (b + δ)nt − dnt + nt (15)
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where δ, a Gaussian random variable with mean 0 and variance σ2,

is an annual deviation from the intrinsic rate b. This formulation

preserves the meaning of b, allowing us to consider the effect of envi-

ronmental variation on a population where everything else remains the

same. Of course, we could also allow d to be a random variable.
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Figure 6: Fifty realizations of the
environmentally stochastic model in

equation 15 with b = 1.1 and d = 1 at

three different levels of environmental
variation. For comparison, the heavy

black line shows the growth of deter-

ministic model and the heavy blue
line shows the growth of the average

population size among stochatic real-

izations. The difference between these
lines shows the drag on population

growth that results from environmen-

tal variation.

Engen et al.9 have shown that the variance in the change in size of 9 S Engen, B.-E. SâĂŸther, and

B E Saether. Stochastic population
models: some concepts, definitions and
results. Oikos, 83(2):345–352, 1998

a population subject to demographic and environmental stochasticity

may be decomposed into two components,

var(∆n |n) = v(n) = v1(n)n + v2(n)n2 (16)

In this equation (and, technically, also assuming no demographic co-
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Figure 7: Fifty realizations of the

environmentally stochastic model in
equation 15 with b = 1.1 and d = 1.

In this case environmental variation

causes the average population size to
decline over time (blue line) despite

the fact that the average value of λ
is greater than one and a population
growing deterministically at the

average population growth rate would

increase (black line). The dashed line
at n0 = 10 shows the initial population

size so that trajectories above this line

have increased whereas trajectories
below this line exhibit decline.

variance), the coefficient v1 corresponds to the contribution to vari-

ance from demographic stochasticity while v2 represents the contri-

bution from environmental stochasticity. Using a technique called the

diffusion approximation allows us to derive a stochastic differential

equation as a continuous time approximation to the growth process

with variance in the form of equation 1610. 10 C. Tier and F. B. Hanson. Persis-

tence in density dependent stochastic
populations. Mathematical Bio-

sciences, 53(1-2):89–117, 1981; and

S Engen, B.-E. SâĂŸther, and B E
Saether. Stochastic population mod-

els: some concepts, definitions and

results. Oikos, 83(2):345–352, 1998

dn = f (n)dt +
√

v(n)dW, (17)

where f (n) is the “mean field” or “deterministic” component to popu-

lation growth or decline, i.e., rn, and v(n) is the random fluctuations.

Here, the unusual term dW is the derivative of a Wiener process, also

called “Brownian motion”. The formulation of the stochastic differen-

tial equation has many advantages, including formulas for such prop-

erties as the stationary distribution, mean, and variances (where they

exist) and probability densities for first passage times, such as the time

to extinction. For the birth-death process, we substitute equations 8

and 9, and have

dn = rndt +
√

(b− d)(b + d)
√

ndW. (18)

The
√

n in this equation is another expression of the square root rule.

If we ignore demographic stochasticity but consider environmental

stochasticity, we have

dn = rndt +
√

v2ndW, (19)

where the fluctuations scale with the population size itself. Together,

these results imply that unless population size is very small (n ≈ 1)

environmental stochasticity will swamp demographic stochasticty.

For many purposes, it may therefore be acceptable to neglect the

effects of demographic stochasticity and focus on equation 19, which is

considerably more tractable than equation 17. Particularly, it has been

known for a long time that the solution to equation 19 is a random
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walk on a logrithmic scale. That is, if we log-transform the population

size to obtain a new variable x = ln(n) and consider fluctuations in

x, then the change in population size is as if x is diffusing equally in

both directions from x0 (Figure 8). A consequence of this result is that

we can calculate the probability that any other population size n∗ is

achieved at time t (conditioning on the event occurring at all) using

the formula11 11 Brian Dennis, Patricia L. Munhol-

land, and J. Michael Scott. Esti-
mation of growth and extinction

parameters for endangered species.
Ecological Monographs, 61(2):115–143,

jun 1991
pn(t) =

ln n0 − ln n∗√
2πv2t3

exp
(
− ((ln n0 − ln n∗)− |r− v2/2|t)2

2v2t

)
. (20)

If we set the extinction threshold to x = 0 (which is n = 1 on the

unransformed scale), then the probability density for the time to ex-

tinction is

p1(t) =
ln n0√
2πv2t3

exp
(
− (ln n0 − |r− v2/2|t)2

2v2t

)
. (21)

These equations can be integrated numerically to obtain the probabil-

ity that extinction will occur by time t given that it does occur. The

ultimate chance of extinction is

p0(∞) =

1 if r− v2/2 ≤ 0

exp(−2 ln n0(r− v2/2)/v2) if r− v2/2 > 0.
(22)

x = ln(n)

p x
(t)

Extinction

threshold

x0
x = 0

t = 1

t = 2

t = 3

Figure 8: The probability density

of log-transformed population size

“diffuses” symmetrically over the
number line. Initial population size is

designated by the vertical dashed line

at x0. The extinction threshold occurs
at x = 0. The extinction probability is

the portion of the probability density
that falls to the left of the extinction
threshold.

Additional quantities that can be obtained from the extinction time

distribution are the expected extinction time (time to x = 0 or n = 1),

m(t) = log(n0)/|r− v2/2|, (23)

and the variance in extinction time,

var(t) = log(n0)v2/|r− v2/2|3. (24)
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Further, the tools of ordinary linear regression provide a battery of

methods for generating confidence intervals, performing hypothesis

tests, and diagnosing fit to model assumptions. See Dennis et al.12 for 12 Brian Dennis, Patricia L. Munhol-

land, and J. Michael Scott. Esti-
mation of growth and extinction

parameters for endangered species.

Ecological Monographs, 61(2):115–143,
jun 1991

details.

These results imply that the main threat to population persistence

is the variation in environmental fluctuations, measured by the quan-

tity v2(n) in equation 16 since the contribution to variance from de-

mographic stochasticity is large only when the population size is small.

Of course, for populations comprised of discrete individuals, the final

decline from n = 2 to n = 1 to n = 0 is necessarily a discrete process

and may be said to be due to demographic stochasticity. Thus, one

view of the relationship of environmental and demographic stochas-

ticity to extinction is that it is environmental stochasticity – random

fluctuations in the environment that affect all individuals in the pop-

ulation similarly – that results in the vulnerability of populations, but

demographic stochasticity – the chance sequence of birth and death

events in the population – that delivers the final stroke.

Estimating the probability of extinction

A practical application of extinction theory is the estimation of extinc-

tion probabilities or population viability analysis13. We have already 13 S R Beissinger. Population viability

analysis: past, present, future. In
S R Beissinger and D R McCullough,

editors, Population Viability Analysis,

chapter 1, pages 5–17. University of
Chicago Press, 2002

argued that the main threat to population viability is the magnitude

of environmental fluctuations, measured by v(n) in equation 17. If we

ignore demographic stochasticity (because it is small relative to envi-

ronmental stochasticity) then we only need values for the parameters

in equations 21 and 22 to estimate the the probability of extinction.

Dennis et al.14 showed that one can estimate the parameters of this 14 Brian Dennis, Patricia L. Munhol-

land, and J. Michael Scott. Esti-
mation of growth and extinction

parameters for endangered species.

Ecological Monographs, 61(2):115–143,
jun 1991

model from simple count data as follows:

1. Transform counts n to x by taking logarithms.

2. Calculate growth/decline increments by taking subsequent differ-

ences of x, i.e., yi = xi+1 − xi.

3. Calculate time intervals for growth/decline intervals as τ = ti+1 −
ti.

4. Regress yi = xi/
√

τi on
√

τi using least squares regression forcing

the fit regression line through the origin; the slope parameter is

an estimate of r − v2/2 and the mean squared error is a biased

estimate of σ2. (Most regression packages will return an unbiased

estimate as well.) In the special case of regularly sampled time

series, these are just the mean and variance of y.

The regression analysis also provides confidence intervals on r and v2

that can be used to propagate uncertainty through to put intervals on
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the estimated probability of extinction.

Performing this procedure using the data in Table 1 for the years

1959 to 1973 we obtain r̂ = −0.018 and v̂2 = 0.006. Substituting these

values into equation 21 and integrating we estimate that if the Na-

tional Park Service had not acted as it did to preserve the Yellowstone

grizzly brea population, the probability of extinction within 100 years

was a serious 8.1%, rising to 89.3% within 200 years. By contrast, ap-

plying the procedure to the data for 1973 to 1997 we obtain r̂ = 0.055
and v̂2 = 0.016 providing an estimate of the extinction probability

of approximately 1.3× 10−14 for the following 100 years. If these cal-

culations may be interpreted to signify the effectiveness of measures

taken in response to the observed decline of the grizzly bear and sub-

sequent recommendations of the Leopold report, then the conservation

of the grizzly bear in the Greater Yellowstone Ecosystem should be

considered an unambiguous success.

Homework

1. Derive the coefficient of variation in equation 10 from equations 8

and 9.

2. Estimate the expected time to extinction of the Yellowstone grizzly

bear population from 1973, had the park not acted as it did.

3. The example above assumes that the dynamics of Yellowstone

grizzly bears should be considered in two epochs, before and after

the 1973 legislation. However, it is possible that the legislation

had no effect at all and that the minimum size of the grizzly bear

population reached around that time was merely coincidental with

conservation actions, in which case the data should be analyzed all

together. Perform this analysis and estimate the ultimate extinction

probability, the probability of extinction in 100 years, and the mean

time to extinction, starting with n0 = 99 corresponding to 1997 (the

last year in Table 1).

4. Devise a test to determine if the Endangered Species Act and other

measures taken around 1973 had a statistically detectable effect on

the population dynamics of grizzly bears. Test for effects on both

mean and variation in change in population size over time.
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