
Complex dynamics

Key concepts

� Cycles

� Overcompensation

� Bifurcation

� Aperiodic dynamics

Density dependence in seasonally reproducing populations

In the first chapter we investigated the dynamics of density-independent

populations. We recognized that some species reproduce continually

and other species synchronize reproduction seasonally. Interestingly,

the long term dynamics that result from these two scenarios are very

similar. Indeed, as we showed, geometric (discrete time) growth or de-

cline can be interpreted as a sample from an exponential (continuous

time) trajectory. In this sense, they are equivalent models. Then, in

the second chapter we introduced density dependence. Are the dis-

crete and continuous time situations equivalent in the case of density

dependence as well? The short answer to this question is “no”. The

range of complex dynamics that result from the combination of density

dependence and discrete time is the subject of this chapter.

Stock recruitment relationship

Figure 1: Pink salmon (Oncorhynchus
gorbuscha).

The dynamics of fish populations is a good starting place for studying

complex dynamics. Pink salmon (Oncorhynchus gorbuscha) are one of

many anadromous fish species that spawn in freshwater streams, mi-

grate to the sea for growth and development, and return to their natal

habitat on maturity to spawn. In the case of pink salmon, maturity

is reached at two years of age. Adult animals “run” (enter spawn-

ing streams) between late late June and October. Females dig a nest

called a “redd” and deposit their eggs, which are fertilized externally
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by one or more males, guarding them until she dies some days later.

Eggs hatch in winter with juveniles emerging in the spring, migrating

downstream to the ocean, and not returning for another year to year

and a half at which point they are full grown. One consequence of this

two year life cycle is that every spawning ground is used by two differ-

ent populations – one that breeds in odd years and one that breeds in

even years.
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Figure 2: Stock-recruitment relation-
ship in pink salmon.

In fisheries science, it is customary to separate population counts

into two categories. Stocks, designated St, refer to the breeding indi-

viduals in a population. Recruits, designated Rt, are the individuals

returning to breed at some time later. In the case of pink salmon, this

interval is two years. The stock-recruitment relationship relates the

number of recruits in a given year to the stock two years prior. The

observed stock recruitment relationship for even year pink salmon in

Area 9, Central British Columbia is shown in Figure 2.
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Figure 3: Per capita stock-recruitment

in pink salmon.
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Figure 4: Shape of the density-

dependent reproductive multipler

λ in the Ricker model.

Plotting per capita recruitment, Yt+2 = Rt+2/St, shows that this

is a density dependent relationship (Figure 3). Inspection of a number

of other stocks shows that this density dependence is in fact a reliable

feature of pink salmon populations. A theoretical idealization of this

relationship is the stock-recruitment curve, Yt+2 = er−bSt , introduced

by fisheries scientist Bill Ricker (Figure 4). Transforming this equation

using logarithms, we arrive at the linear equation ln Yt+2 = r − bSt.

The parameters r and b may then be estimated from data using linear

regression (Figure 5).
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Figure 5: Per capita stock-recruitment
in pink salmon on a logarithmic scale.

Dropping one extreme observation (at
S = 502.4), a linear regression model
provides estimates of r̂ = 2.52 +/- 0.38
(s.e.) and b̂ = −0.011 +/- 0.003 (s.e.).

To develop a model for pink salmon population dynamics, we sim-

ply multiply this stock-recruitment curve by the size of the spawning

population, yielding the Ricker model (Figure 6):

Rt+2 = Ster−bSt . (1)

If all recruits are included in the subsequent generation of spawners

then this is a model for the biannual dynamics of the population, i.e.,

St+2 = Rt+2 = Ster−bSt . (2)

However, if some proportion h are either harvested or die of natural

causes prior to spawning then we must multiple Rt+2 by (1 − h) to

obtain the number of spawners at St, yielding

St+2 = Rt+2(1 − h) = (1 − h)Ster−bSt . (3)

If one thinks of the term er−bSt as analogous to the reproductive mul-

tiplier λ, then this model may be interpreted as a density-dependent
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version of the discrete time model introduced in Chapter 1, which we

might now write as λ(S) = er−bSt . Indeed, as the size of the stock

goes to zero, the reproductive multipler approaches the value er and

the density independent model is recovered exactly. Thus, the quan-

tity r plays exactly the same role in this equation that the intrinsic

rate of increase plays in the density-independent models that result in

geometric and exponential growth. That is, it is a measure of repro-

ductive potential. The density dependence, by constrast, is brought in

through the parameter b, which causes the reproductive multiplier to

decline to zero as the stock size St gets large.
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Figure 6: Ricker stock-recruitment

curve.

What is the carrying capacity of this model? By definition, carrying

capacity is a positive equilibrium such that any population smaller

than carrying capacity increases and any population larger than carry-

ing capacity decreases. As an equilibrium, the carrying capacity is size

of the population at which no fluctuations occur. Designating this par-

ticular population size by S∗, we rewrite equation 3 using S∗ on both

the left hand and right hand sides of the equation and solve, giving

S∗ =
r − ln

(
1

1−h

)
b

. (4)

In the abence of harvesting, this reduces to

S∗ =
r
b

. (5)
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Figure 7: Solution of the Ricker model
with r = 1.

What do time series generated by the Ricker model look like? Fig-

ure 7 shows solutions of equation 2 obtained using S0 = 2 for the

initial condition and r = 1 for the intrinsic rate of increase. For com-

parison, the carrying capacity S∗ = r/b is plotted as a dashed line.

Evidently, the Ricker model can exhibit the sigmoidal approach to car-

rying capacity reminiscent of the logistic model. This initial similarity

masks a deep difference however. Recalling that λ = er is a measure of

the maximum reproductive potential of the species, we recognize that

this model is for a species with λ = e1 ≈ 2.72. For pink salmon, which

produce up to 2000, this value of of r seems too low. What happens

as we increase r? Figure 8 shows solutions to the same model, except

having set r = 1.75. In this case, we see two new phenomena. First,

the population starting below carrying capacity does not smoothly ap-

proach equilibrium, but rather overshoots it – a phenomenon referred

to as overcompensation. Second, this overcompensation leads to un-

dershooting, which results in further overshooting, undershooting, etc.

resulting in damped oscillations toward equilibrium.
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Figure 8: Solution of the Ricker model
with r = 2.
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Figure 9: Solution of the Ricker model
with r = 2.1.
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Figure 10: Solution of the Ricker
model with r = 2.6.
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Figure 11: Solution of the Ricker

model with r = 2.70005.
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Figure 12: Solution of the Ricker

model with r = 2.8.

Given this surprise, we may wonder what happens if we increase r
still further. At the value r = 2.1 we see that these damped oscilla-

tions have given way to diverging oscillations toward a stable sequence

of values oscillating at a fixed distance from the equilibrium, a pattern

referred to as a 2-cycle (Figure 9). At the value r = 2.6 the 2-cycle has

given way to a 4-cycle (Figure 10) and at r = 2.70005 we observe an

8-cycle (Figure 11). Counting the periods of these cycles, 2, 4, 8, ... we

observe that there is a pattern to the changes in the pattern. Specif-

ically, each time there is a change in dynamics there is a doubling of

the period of the cycle. At r = 2.8 an even stranger phenomenon

appears: the dynamics become completely aperiodic (non-repeating).

This phenomenon is known as dynamical chaos and the pattern we

observed is called the perdiod doubling route to chaos.

We can investigate this period doubling route to chaos more com-

prehensively by constructing a bifurcation diagram. The bifurcation

diagram collects the various values of the population’s trajectory vis-

ited by the system, known as the attractor, for a particular value of

some parameter (in our case r) and plots them against that parameter.

Figure 13 shows the bifurcation diagram of the Ricker model. Inspect-

ing this graph beginning at the origin we see that increasing r simply

increases the value of the carrying capacity, which is stable. However,

at the value r ≈ 2 this stable branch “bifurcates” into a 2-cycle, which

exists over a smaller interval of r, before bifurcating again at a slightly

larger value of r. Indeed, the intervals over which each new period

This sequence of smaller and smaller

windows is called the Feigenbaum
cascade after the mathematician who
proved its convergence

exists get smaller and smaller so that eventually the dynamics become

aperiodic. Besides this regularity, two additional features also appear.

First, even within the “aperiodic region” there exist windows in which

the population becomes period-locked to some low dimensional cy-

cle. Additionally, with every increase in r after the first bifurcation

the minimum of the attracting set becomes smaller and smaller and

the maximum of the attracting set becomes larger and larger so that

the amplitude in fluctuations increases. These results predict that for

populations exhibiting aperiodic population dynamics, the greater the

reproductive potential the more variable the population dynamics will

be.

These properties of this diagram – multi-generational cycles, period-

doubling, increasing amplitude fluctuations, aperiodic dynamics and

phase-locking – are not special to the Ricker model, but are common

features of discrete time models, models with time delays, and suffi-

ciently complex continuous time delay models. Two of these features,

Continuous time models must have at
least two dimensions to produce cycles
and three dimensions to produce

chaos.

multi-generational cycles and aperiodic dynamics, have inspired much

research in population ecology aimed at determining whether or not

these phenomena occur in natural populations.
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Figure 13: Bifurcation diagram of the

Ricker model with b = 0.005.

First, in fisheries research, it is well known that many populations

cycle. For instance, Figure 14 shows the number of spawning fish in

Area 9 in each year from 1950 to 1996. We can investigate the pres-

ence of cycles by computing the autocorrelation function, which con-

sists of the coefficient of correlation for each value of the series with

itself at a lag of τ. That is the autocorrelation at lag τ = 1 is the

correlation coefficient between the series Rt and Rt+1. The autocor-

relation at lag τ = 2 is the correlation coefficient between the series

Rt and Rt+2. The autocorrelation function up to lag 16 is plotted in

Figure 15). The statistically significant, negative autocorrelation coef-

ficient at lag 2 indicates that this population does cycle between large

and small values. (Correlation coefficients were calculated after tak-

ing logarithms. Autocorrelation coefficients larger than the blue line

are significantly different than zero at the α = 0.05% level.) Indeed,

the alternating tapering coeffients of correlation are precisely what we

would expect for a slightly noisy autoregressive process such as would

be obtained by a population following the Ricker model.
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Figure 14: Recruitment of pink

salmon in Area 9, Central British
Columbia, Canada.

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Pink salmon Area 9

Figure 15: Autocorrelation of the
recruitment of pink salmon in Area 9,

Central British Columbia, Canada.

We recall, however, that pink salmon have a two-year generation time.

So, these are actually two different spawning populations, i.e., the

“even year” population and the “odd year” population, with their dy-

namics superimposed. If we separate out just the even year population

or just the odd year population (16), and compute the autocorrela-

tion functions for these time series we fail to find any evidence for the

two-generation cycle predicted by the Ricker model (17). In fact, a

meta-analysis of the Myers stock-recruitment database fails to find

evidence of multi-generational (overcompensatory) cycles in all of 306

unique stock return time series.
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Figure 16: Recruitment of even year

pink salmon in Area 9, Central British

Columbia, Canada.
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Figure 17: Autocorrelation of the

recruitment of even year pink salmon

in Area 9, Central British Columbia,
Canada. These data fail to provide

any evidence for multi-generational

cycles.

These results lead us to two further questions.

� What prevents the generation of cycles, dynamical chaos, or other

high amplitude fluctuations in fish populations?

� Why are the two populations of such dramatically different sizes?

(If odd and even year salmon runs are just two populations iden-

tical in all respects expect that they spawn in alternate years, one

would expect the two populations to be of similar size.)

The two most probable answers to the first question are:
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� Harvest indeuced stability. Harvesting reduces the realized growth

rate of the population sufficiently to force the population to remain

in the stable zone.

� Strong density regulation. The density dependence exhibited by

the Ricker model is too severe. To build a more accurate model we

require a stock recruitment curve with more severe curvature.

Although both answers could plausibly explain why we fail to see

cycles or high amplitude fluctuations in fisheries data, they differ

with respect to the hypothesized mechanism as well as the empirical

consequences of changing fishing practice. If the first answer is correct,

a release from fishing pressure (or a comparison with unharvested

species) is predicted to result in cycles. However, if the second answer

is correct, then we are left to inquire what the density dependence

actually looks like. Depending on the form this density dependence

takes, release from fishing may or may not result in cycles or other

high amplitude fluctuations.

Harvest induced stability

To examine the hypothesis of harvest induced stability, it will help to

define a = er. Then equation 2 may be rewritten as

St+2 = (1 − h)aSte−bSt . (6)

Since a = er then we can also write r = ln(a) and interpret the bifur-

cation diagram in Figure 13 as a bifurcation diagram of a where the

x-axis is plotted on a logarithmic scale. Alternatively, we can replot by

exponentiating r arriving at the bifurcation diagram in Figure 18.

To be effective at stabilizing the pink salmon population, harvesting

must reduce per capita reproductive output to er
crit ≈ 7.4 offspring per

spawner, where rcrit is the value of r at which the stable equilibrium

in Figure 13 bifurcates into a 2-cycle. From Figure 5, we estimate

the maximum pre-harvest recruitment to be er̂ ≈= e2.52 ≈ 12.4.

Thus, harvesting would need to remove uproughly (12.4 − 7.4)/12.4 ≈
40% of the returning recruits annually to achieve stability. Given

recent annual harvests of more than ten million individuals it seems

that the hypothesis of harvest induced stability is indeed a plausible

explanation for the failure to observe cycles in pink salmon.

Strong regulation and the Beverton-Holt model

Alternatively, the hypothesis of strong regulation suggests that the

Ricker curve in Figure 6 does not sufficiently capture severe density
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Figure 18: Bifurcation diagram of

the “a version” Ricker model with
b = 0.005.

dependence exhibited by fish populations at even modest population

sizes. To investigate this hypothesis we need to try a different equa-

tion to represent the stock-recruitment relation. The Beverton-Holt

model is one such candidate. This model suggests the stronger form of

density dependence given by

λ(St) =
er

1 + aSt
. (7)

Whereas the Ricker equation is exponential (and therefore linear af-

ter transforming to a logarithmic scale), the Beverton-Holt model is

hyperbolic. Accordingly, density dependence in this model is initially

quite severe (the slope is steeper at small population sizes than for the

Ricker model), tapering off to become more gradual at larger popula-

tion sizes. 0 100 300 500
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Figure 19: Per capita stock-
recruitment in pink salmon on a

logarithmic scale. A nonlinear re-
gression fit provides least squares

estimates of r̂ = 4.74 +/- 2.1 (s.e.)
and â = 0.37 +/- 0.79 (s.e.).

For comparison with the Ricker model we rearrange equation 7 to

give ln Yt+2 = r − ln(1 + aSt). Fitting this model with nonlinear

regression yields the result in Figure 20. Just as the Ricker model

from above, this model does appear to provide a reasonable fit to the

data. Moreover, unlike the Ricker model, the extreme observation at

S = 502.4 is also reasonably well fit.

The equation for the population dynamics is

St+2 = St
er

1 + aSt
. (8)
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The dynamics exhibited by this model are considerably less dra-

matic than those of the Ricker model. Indeed, at relatively small

values of S the two may be nearly equivalent (Figure 20). However,

as the family of curves in Figure 21 shows, the only change that oc-

curs as r increases in the Beverton-Holt model is that the approach to

equilibrium is faster. This is a key difference between the two mod-

els. Further, it means that strong regulation may be the cause of our

failure to see cycles in fish population dynammics.
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Figure 20: At a small value of r
(r = 0.35) the Ricker model and

Beverton-Holt model give very similar

solutions.

Does overcompensation happen in nature?

The outcome of our study of pink salmon is a little unsettling. Clearly,

salmon populations fluctuate considerably. But, the magnitude of

these fluctuations is neither periodic nor do extremes run close to zero

as they would if they were aperiodic. Instead, pink salmon populations

appear to be fluctuating around an equilibrium. Further, it appears

that the two possible explanations for the lack of overcompensation

(harvest-induced stability and strong density dependence) cannot be

distinguished without taking further, improbable actions such as a

moratorium on pink salmon fishing. Perhaps, however, overcompensa-

tion occurs elsewhere in nature.
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Figure 21: Solutions of the Beverton-

Holt model at values of r = 0.35,

r = 0.5, r = 1, and r = 5.

An initially plausible place to find overcompensatory dynamics is

insect populations. Insect species often exhibit density dependence

and many, especially phytophagous insects, reproduce once per year in

a life cycle referred to as univoltinism. Is overcompensation possibly

common in univoltine insect species? This question was taken up in a

classic paper from 1976.1 The authors fit a simple dynamical model 1 M P Hassel, Lawton J.H., and May
R.M. Patterns of dynamical behaviour

in single species populations. Journal

of Animal Ecology, ??:471–486, 1976

to data on 24 different laboratory and field populations of insects.

From the estimated parameters of the model, the authors determined

that only one species (a beetle, Leptinotarsa decemlineata) should ex-

hibit sustained oscillations with an additional three species exhibiting

damped oscillations toward an equilibrium. Parameter estimates for

the other 20 species were all in the range corresponding to a mono-

tonic approach to equilibrium. These results were surprising since a

well known experiment by A.J. Nicholson using the Australian sheep

blowfly (Lucilia cuprina)2 had exhibited extremely erratic overcom- 2 Aj Nicholson. An outline of the

dynamics of animal populations.
Australian Journal of Zoology, 2(1):

9, 1954. ISSN 0004-959X. doi:

10.1071/ZO9540009; and a. J. Nichol-
son. The Self-Adjustment of Popula-
tions to Change. Cold Spring Harbor

Symposia on Quantitative Biology, 22
(0):153–173, 1957. ISSN 0091-7451.

doi: 10.1101/SQB.1957.022.01.017

pensatory oscillations. Indeed, we now know that this experiment was

the biological manifestation of dynamical chaos.3

3 Simon N Wood. Statistical inference
for noisy nonlinear ecological dynamic
systems. Nature, 466(7310):1102–

1104, 2010. ISSN 0028-0836. doi:
10.1038/nature09319

Another possible location for natural overcompensation is popu-

lations with age structure, which gives rise to population inertia. As

we have seen here, one of the key ingredients for overcompensation is

a time lag that allows the population to “overshoot” its equilibrium.

Long-lived species with late age at first reproduction exhibit a life

cycle that can give rise to this kind of time lag. In this case, more ex-
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amples of overcompensation are known. For instance, Higgins et al.

showed that large fluctuations in Dungeness crab (Cancer magister)

are best explained as the results of damped oscillations, induced by

age-structured density-dependence in vital rates, excited by environ-

mental fluctuations.4 In another interesting example, a wild popula- 4 K. Higgins. Stochastic Dynamics

and Deterministic Skeletons: Popu-

lation Behavior of Dungeness Crab.
Science, 276(5317):1431–1435, 1997.

ISSN 00368075. doi: 10.1126/sci-

ence.276.5317.1431

tion descended from feral individuals of a primitive breed of domestic

sheep (Ovis aries) lives on the islands of Soay and Hirta in the St.

Kilda archipelago off the western coast of Scotland. This population

has been the subject of intense ecological and evolutionary study since

1959. In 1992, it was shown that the population fluctuations of the

Soay sheep are due to overcompensatory mortality interacting with

age-specific responses to winter severity, a result that was later seen to

interact with weather, implying that both density dependence and the

magnitude of climate variation are key to understanding the dramatic

fluctuations exhibited by this population.5 5 B T Grenfell, O F Price, S D Albon,

and T H Clutton-Brock. Overcom-

pensation and population cycles in
an ungulate. Nature, 355(6363):823–

826, 1992. ISSN 0028-0836. doi:

10.1038/355823a0; and T Coulson,
E a Catchpole, S D Albon, B J Mor-

gan, J M Pemberton, T H Clutton-

Brock, M J Crawley, and B T Gren-
fell. Age, sex, density, winter weather,

and population crashes in Soay sheep.

Science (New York, N.Y.), 292(5521):
1528–1531, 2001. ISSN 00368075.

doi: 10.1126/science.292.5521.1528

Test yourself

� When are recruitment and spawning stock equal in size?

� What is overcompensation?

� How does overcompensation result in cycles?

� What are aperiodic dynamics?

� What features of a species’ life history predispose it to overcompen-

satory dynamics?

Homework

1. Find the equilibrium of Beverton-Holt model.

2. Consider a population with density dependent growth given by the

Beverton-Holt model with parameters r = 0.96 and a = 0.0044, and

initial population size S = 147. What will be the population size

after five generations?

3. What is the carrying capacity of the population in the previous

question? Is it stable?

4. The version of the Beverton-Holt model introduced in this chapter

does not consider harvesting. Modify equation 8 to represent the

dynamics of a harvested fish population.

5. Another discrete time density-dependent model is the logistic map,

xt+1 = rxt(1 − xt/k), which is named for its similarity to the

continuous time logistic equation. Find the equilibria of this model.
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Iterate the model for a range of values of r. Plot the bifurcation

diagram. How is the logistic map like the Ricker model? How is it

different?

6. Sometimes, for instance to prepare data for time series analysis, it

is useful to think about the dynamics of the logarithm of popula-

tion size. Consider the change of variable x = ln(S). What is the

difference equation for the logarithm of population size according

to the Ricker model, i.e., find the expression for f in the difference

equation xt+1 = f (xt). Recall that on the ordinary scale and with

annual generations rather than biannual generations, Ricker model

dynamics are give by St+1 = Ster−bSt .
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