Population growth and decline: Grizzly bears in

Yellowstone
Andrew Park € John Drake, Odum School of Ecology

Background

The grizzly bear Ursus arctos horribilis used to inhabit most of North America, but these days its continental
range is restricted to the northwestern US (including Alaska) and western Canada. The Yellowstone National
Park population is one of the most southern in the US and has experienced recent periods of decline and
growth. Grizzly bears are a species vulnerable to local extinction. They have one of the lowest birth rates
among all terrestrial mammals in the US.

Load and plot data

b <- read.csv("bears.csv",header=T)

Plot the number of female grizzly bears over time:

plot (b$year,b$females,xlab="Year",ylab="Number of females")

3

S 00

o _|

(@]
3 o o
© O ]
% o
S R o ©
o o o0
o 9
a9 © o ° o
£

o _| o)
Z W 0]

o o
- 620,000 S
S Ooo 0°0 o o .%o
o) 0©
o 0 ©o
[ [ [ [
1960 1970 1980 1990
Year

To help us understand the changes in the grizzly bear population we can make use of certain facts:

e The decline in the 1960s and 1970s coincided with closure of garbage dumps in the parks following a
number of bear-inflicted human injuries

e At the beginning of the growth period the grizzly bear was listed as a threatened species in the lower
48 states under the Endangered Species Act (1975)

e In the 1980s a recovery plan was developed and implemented in Yellowstone



Growth phase, subsetting data

In which year do you consider that recovery began?

Subset your data to look at this phase
s <- subset(b,year>1979)

Referencing data

The recovery phase of bears is now stored in a 2-column data frame, with the same column names (years,
females) as the original data frame. We can pick out various parts of a data frame, including single columns
and rows, and parts of columns and rows (even just one data cell).
We can look at just the years by either refering to s$year or s[,1]

s$year

## [1] 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
## [15] 1994 1995 1996 1997

s[,1]

## [1] 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
## [15] 1994 1995 1996 1997

In general we can access parts of a data frame (here, called s) by using square brackets, s[x,y] where x and
y refer to the rows (x) and columns (y), respectively. If you want to refer to all rows or columns you leave
the corresponding x or y empty. Hence, s[6,] is all columns but just the 6th row, and s[,] is the full data
frame. Note, in R we can refer to a range of numbers using :. For example

2:5
## [1] 2 3 4 5

gives all integers between 2 and 5, inclusive. If you don’t want the range of numbers to be continuous, use
c() with the desired numbers placed in the round brackets, separated by commas. For example, if instead of
2 through 5, you wanted to miss out number 4, then you’d write:

c(2,3,5)

## [1]1 2 35

How would you reference the first three population sizes (but not years) of the recovery phase?

s[1:3,2]

## [1] 36 37 41

While these examples seem trivial, referencing data is an important part of scientific programming.

Generating a simple rule for population change, writing functions and using
loops

Let’s try a simple rule for how the population recovered. We’ll assume that each year there were 3 more
bears than last year. While this rule is simple enough to proceed by hand or with a calculator, we’ll take the
opportunity to write a function. R has many built in functions (you've used a lot of them already). They are
useful for tasks that we might want to carry out often. We can write custom made functions. But first, what
is a function? For our purposes, it’s a small piece of code that when suppled with some inputs, will return



the desired output. We want to provide a current population size and have it return the next (predicted)
population size (one with 3 more bears).

add3 <- function(x){
return(x+3)

}

We've called the function add3. We have to be careful not to try and name a function with the same name
as one of R’s built-in functions. If you're not sure, first type your desired function name into the console
window (bottomleft) and hit return. If you get an error message object not found then you’re good to go,
since R doesn’t recognize that name yet. If instead you see some code starting with the word function, then
this is likely a reserved name and you should try something else.

We should first convince ourselves that the function is doing what we think it should:

add3(5)

## [1] 8

Looks good. We supply the number 5, the function adds 3 to it and spits out the number 8. We can use this
function to propagate forward in time; each time we call the function with the latest population size. This
kind of repetition can be done using loops. We’ll create a place to store our prediction, and just like the
data, we’ll store it in two columns: the first will contain the year and the second will contain the predicted
population size (starting with the actual population size in the first year of the recovery phase). Note that we
can write the code without commiting to which year marks the beginning of the recovery phase. We just take
the relevant information from the s data frame, which you can create by subsetting to your own satisfaction.

p <~ sli1,]

for (y in 2:dim(s) [1]1){
ply,1] <= pl(y-1),11+1
ply,2] <- add3(pl(y-1),2])

}

OK, we have a prediction data frame p which is the same size and structure as the data frame s. To evaluate
if this prediction is any good, we’re going to need a rule for measuring how accurate it is. We’ll keep this rule
simple: for each year, we’ll look at the difference between the real data and the prediction and we’ll sum up
those differences over all the years. Our measure won’t pay attention to the sign (4/-) of this difference. In
other words, over estimating will be just as bad as underestimating. A good prediction, therefore, should
have a low value of this measure - which describes discrepencies between the data and the prediction. We
can proceed by writing another function. We’ll supply the two data frames (s and p) and the function will
return the measure we’ve just described.

my.error <- function(a,b){
value <- 0
for (y in 1:dim(a) [1]1){
value <- value + abs(aly,2]-bly,2])
}
return(value)

}

Let’s see how we did

my.error(s,p)

## [1] 98



Over to you...

This model at least has the bear population growing, which it did during the recovery period. Your goal is
to come up with an improved prediction, which will involve writing a function that better captures what’s
going on during population growth than the add3 function was able to do. To be pursuasive, you should
demonstrate that this new rule performs better than add3. Once you've written your function and calculated
the discrepency between your prediction and the data you should also try plotting the data and the prediction
on one graph. Have a look at the plots we did for the Common Terns for some starting points, and ask your
instructors and class mates for their advice and opinions.
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