
Dynamics of age-structured populations

Objectives

The objectives of this laboratory exercise are to:

� Use the R programming environment for numerical analysis

� Develop and execute a computer program written in the R language

� Use functions

� Solve a system of linear difference equations to get the exact future population size

� Numerically obtain the dominant eigenvalue and right eigenvector of the population projection matrix

� Show that growth of an age-structured density-independent discrete time population model converges
to the dominant eigenvalue of the projection matrix

� Show that the age distribution of an age-structured density-independent discrete time population model
converges to the right eigenvector

Introduction

Demographic theory

In class we noted that we can represent simple population growth in discrete time with a system of difference
equations. The following system of equations could represent an age-structured population with maximum
lifespan of six years and three year old age at first reproduction. Notice how many transitions are set to
zero.
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n1 = (0)n1 + (0)n2 + F3n3 + F4n4 + F5n5 + F6n6 (1)

n2 = s1n1 + (0)n2 + (0)n3 + (0)n4 + (0)n5 + (0)n6 (2)

n3 = (0)n1 + s2n2 + (0)n3 + (0)n4 + (0)n5 + (0)n6 (3)

n4 = (0)n1 + (0)n2 + s3n3 + (0)n4 + (0)n5 + (0)n6 (4)

n5 = (0)n1 + (0)n2 + (0)n3 + s4n4 + (0)n5 + (0)n6 (5)

n6 = (0)n1 + (0)n2 + (0)n3 + (0)n4 + s5n5 + (0)n6 (6)

Further, this model can be more compactly represented (and solved) using matrix algebra, in which case,

n1 = Ln0 (7)

with solution

nt = Ltn0 (8)

from which we deduce that the asymptotic growth rate is given by the dominant eigenvalue and that the
stable age distribution is given by the dominant eigenvector.

Calculating eigenvalues numerically

For very small models (e.g., for species that live up to two or three years) or for species with life cycles
that can be approximated by a two-stage Lefkovich matrix, we can calculate the dominant eigenvalue and
dominant eigenvector by hand. Generally, however, we will want to evaluate these quantities numerically.
The theory of numerically computing eigenvalues and eigenvectors is actually quite advanced. Fortunately,
computation is usually straightforward in practice. This is because the non-profit software company NAG
(for “Numerical Algorithms Group”) has developed a very solid, portable library of Fortran routines for
solving common problems from linear algebra – including eigenvalue/eigenvector problems. This software
is called LAPACK. The relevant routines from LAPACK can be accessed in R using the function eigen,
which takes as its argument a matrix in the usual form, i.e., in our case the Leslie matrix, and returns the
numerically evaluated eigenvalues and eigenvectors.

An age-structured population

In this exercise we will study a hypothetical species which lives for six years. The life history graph is illus-
trated below, showing the age-specific fecundities F3 through F6. Notice that two year olds don’t reproduce
in this species and that fecundity increases with age. First, we create a function, called LeslieSolve that
takes as its argument the age-structured vector of individual abundances and returns the age-structured
abundance vector in the next time step. The guts of this function are a system of linear difference equations
that represent this life history.
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Figure 1: Life cycle graph.

> LeslieSolve <- function(n) {

+ x1 <- ((2 * n[3]) + (4 * n[4]) + (6 * n[5]) + (12 * n[6]))

+ x2 <- (0.3 * n[1])

+ x3 <- (0.9 * n[2])

+ x4 <- (0.9 * n[3])

+ x5 <- (0.2 * n[4])

+ x6 <- (0.2 * n[5])

+ n.out <- c(x1, x2, x3, x4, x5, x6)

+ }

By declaring a vector of abundances n and using LeslieSolve we can compute the vector of population sizes
at the next time step.

> n.0 <- c(40, 25, 6, 12, 5, 1)

> n.1 <- LeslieSolve(n.0)

Using the “column bind” operation (R function cbind), we can store the results of repeated iteration of this
function and then use barplot to generate a graph.

> n <- cbind(n.0, n.1)

> n.2 <- LeslieSolve(n.1)

> n <- cbind(n, n.2)

> n.3 <- LeslieSolve(n.2)

> n <- cbind(n, n.3)

> n.4 <- LeslieSolve(n.3)

> n <- cbind(n, n.4)

> barplot(n, legend.text = c("x1", "x2", "x3", "x4", "x5", "x6"),

+ args.legend = c(x = "bottom", horiz = TRUE))
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Open the file age-structured-code.R in RStudio. Run this code to confirm that the function works and
reproduce the results obtained above. Then modify or add to this program to solve the following problems.

Exercises

1. Start with initial population where the abundance of x1 is 100 and x2 through x6 are 0. Use Leslie-

Solve to determine if this population increases or decreases. Modify the function so that s1 is 0.15
and solve again. Now is the population increasing or decreasing. At (approximately) what value of s1
is the population stable? Switch back to s1 = 0.3 for the remainder of the exercise.

2. Perhaps one of the more unexpected properties of this model is that over time the relative abundance
of the difference age classes settles down to the stable age distribution. As we know, and will show later
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in this exercise, this stable age distribution is easy to calculate as the right eigenvector of the Leslie
matrix. Importantly, however, the population doesn’t immediately reach the stable age distribution.
Rather, the stable age distribution is approached asymptotically (as is the growth rate, for that matter).
This raises two questions. First, how fast does the actual age distribution approach the stable age
distribution? How long does it take before transient dynamics are surpassed and the population
exhibits stable growth? To answer these questions, initialize six populations with the following initial
age distributions, iterate for 50 time steps, and plot the abundance of each age class over time. What
behavior do you observe? In general, how quickly does population growth stabilize? What is the effect
of concentrating the initial population in early versus late age classes?

� n0 = [10, 10, 10, 10, 10, 10]

� n0 = [60, 0, 0, 0, 0, 0]

� n0 = [0, 0, 0, 0, 0, 60]

� n0 = [20, 0, 20, 0, 20, 0]

� n0 = [20, 20, 20, 0, 0, 0]

� n0 = [0, 0, 0, 20, 20, 20]

What are the implications of these transient dynamics for interpreting data collected from natural
populations?

3. Now, declare a two-dimensional “vector” L which contains the Leslie matrix for this species. (To
clarify, one should think of a matrix in R as being a two-dimensional vector. If you declare a two-
dimensional vector, R will automatically recognize it as a matrix, i.e., run m=rbind(c(1,2),c(3,4));

is.matrix(m).) Hint: use a combination of rbind and c or just the function matrix by itself.

4. Use the function eigen to return a list of the eigenvalues and eigenvectors of this population. Use the
R function Re to extract the real part of the dominant eigenvalue – this is the λ of the matrix and is
the long run population growth rate. (What is λ for this population?)

5. In this step we study the convergence of population growth to its asymptotic rate. For this purpose we
will focus on the total population size (i.e., the value obtained from summing the abundance of each
age class). To do this, we will solve the model three different ways:

� Using λ as a scalar multiplier for the scalar (unstructured) population size N = n1 + n2 + n3 +
n4 + n5 + n6

� Using λ as a scalar multiplier for the structured population vector n0 = [n1, n2, n3, n4, n5, n6]

� Using the function LeslieSolve to iterate the model exactly

Using each of these approaches, solve the model for 50 time steps and plot the results for comparison,
using n0 = [10, 10, 10, 10, 10, 10] as the initial population vector. Repeat using each of the other initial
population vectors from the table above. What differences result from the three ways of representing
population growth? When does it appear that these differences are most important?

6. For extra credit, show how the the stable age distribution approaches the normalized dominant eigen-
vector returned by eigen.
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