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1. Derive the estimator.in equation 5 from equation 2. ﬂo
2. The standard devin.ll'.ion of our estimate for the intinsic rate of in-
crease of the Nunivak Island muskox population is shown In paren- ,f] n t 7 Ao k ;]
theses in the last line of Table 1. Using this and other information _— —
in the table estimate the 95% confidence interval of 7. Use this in- N o
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extrapolated to 2010. . ,(.:

3. Our record of the population of muskox on Nunivak Island ls re-

markably good. Suppose instead of annual censuses the only follow @ d P ( _
yr !’o L: nir @a*"’,")n

up censuses had been conducted at year 10 (1946) and year 20
(1956). What would you prodict the population size to be in 2010.

Whet are the lower and upper bounds of your estimate? dn
i
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FRe¥N —=> 4. Derive an estimator for A from equation 4.

CH-MTE!Q % 5. Derive the canonical form of the logistic model in equation g from = L - q, (!,
' ) bo— d

the form in equation 8.
6. Solvo equation 9 to obtain the sclution in equation 10

7. In the equation for exponential growth, the por capita population

= ra -
growth rate at all population slzes Is given by the parameter r and - T(‘
2 markg]

was called the intrinsic rate of increase, In the loglstic equation

the percapita population growth rate declines with pepulation size,

but is at its maximum, which also is equal to r, in the limiting case @
where # = ( (i.e., as population size becomos small the behavior of S‘A

LY

r>0.6499

the exponential growth model is recovered). Thus, in this caso, also, A

r may be called the intrinsie rate of increase becauso It is the max- wppLc = O . | 70(4 + 20" =6 ‘135
imum per capita growth rate. However, this Interpretation of r o* :

longer holds in the model for the Allee effect given in equation 11. F’ bower * 6 N 30 G- 20‘ = 0.0 3 { A

Here the maximum per capita population growth rate occurs at an

intormediate population slse #, ¢ < A < k. Find an expression for N

f and the intrinsic rate of increase (maximum per capita population ¢ f“pp‘( * (4‘{00_
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Complex Dynamics Homework Solutions

1. Find the equilibrium of Beverton-Holt model.
The Beverton-Holt model is a discrete-time model (shown here with annual genera-
tions):

67"

St+1 = Stl —i—aSt'

(1)

A discrete time model is at equilibrium then the left and right sides of the equation
are identical, i.e.,

* _ Qx e’
§ =S (2)

Dividing both sides by S* we have

67’

1=—<
1+ aS*’

which can be rearranged to give the equilibrium value:

g1 ()

a

2. Consider a population with density dependent growth given by the Beverton-Holt
model with parameters r = 0.96 and a = 0.0044, and initial population size S = 147.
What will be the population size after five generations?

This problem is solved by evaluating the equation 1 successively five times. In the first
time step we have Sy, = 147 e y = 233.1305. In the second generation we have

T50.0044(177)
Sit1 = 233.1305 ryg5imarmaesy = 300.5597. Similarly, for the third, fourth, and fifth

generations, we calculate 337.9907, 354.9146 and 361.8521.

3. What is the carrying capacity of the population in the previous question? Is it stable?

From the solution to question 1, we calculate that the carrying capacity is S* =
% = 366.2947. By evaluating equation 1 at values slightly smaller and slightly
larger than this (say, 365 and 367) and observing that they both move in the di-
rection of the equilibrium we conclude that the equilibrium is stable. Specifically,
365 st — 3057979 and 367 5irimsry — 366.5644.

140.0044(365 1-+0.0044(367)

1



4. The version of the Beverton-Holt model introduced in this chapter does not consider
harvesting. Modify equation 8 to represent the dynamics of a harvested fish population.

We will assume that fish harvest occurs after recruitment and prior to reproduction.
This means that of stock size S in a given year, only a portion U < S is available for
reproduction. The difference between U and S is the number of individuals harvested,
H. That is

S—U=H. (5)

We will assume a harvest proportional to the stock size with catch rate h. Thus,
H = hS. Substituting this last equation into 5 and rearranging, we have

U=S-hS. (6)
Now, we insert this into out basic Beverton-Holt model, yielding:

eT’

1+ G(St — hSt) ’

Sty1 = (St - hSt) (7)

5. Another discrete time density-dependent model is the logistic map, 1 = ro(1—x4/k),
which is named for its similarity to the continuous time logistic equation. Find the
equilibria of this model. Iterate the model for a range of values of r. Plot the bifurcation
diagram. How is the logistic map like the Ricker model? How is it different?

To find the equilibria of the logistic map we set x;,1 = x; = 2* and solve for z*, i.e.,

* =ra*(1—a"/k) Divide by x;
1=r(1—2"/k) Multiply through on the right hand side
l=r—ra*/k Subtract r and divide by —1
r—1=ra"/k Multiply by &/r
k(r—1)/r =x".

6. Sometimes, for instance to prepare data for time series analysis, it is useful to think
about the dynamics of the logarithm of population size. Consider the change of vari-
able x = In(S). What is the difference equation for the logarithm of population size
according to the Ricker model, i.e., find the expression for f in the difference equation
2441 = f(x4). Recall that on the ordinary scale and with annual generations rather
than biannual generations, Ricker model dynamics are give by Sy, = Spe” 0%,

First we rearrange the identity = = In(S) to five S = e*. Then we substitute e* in the
Ricker model yielding

—be®t —be®t
eltHl — Tt el be — ext-l—r be ] (8)



Since we are looking for a description of the dynamics of x we log-transform both sides
to get

Tyl = Xy +7r— be™t. (9)



