
Age and stage structure

Key concepts

• Static and cohort life tables

• Survivorship curves

• Gross vs. net reproductive growth

• Transient dynamics and the stable age distribution

• Projection matrices

• Reproductive value

• Age- vs. stage-structure

So far, we’ve assumed that all individuals in a population are the

same with regard to the forces that change population size (particu-

larly births and deaths). A moments thought about our own species

convinces us that reproductive potential and probability of dying vary

with age. This chapter reviews how we collect and organize data con-

cerning heterogeneity in reproduction and survivorship as a function of

age or stage of life, and explores the consequences of such structure on

population dynamics.

Figure 1: Hainan Eld’s deer (Cervus

eldi hainanus).

Static vs. cohort life table data

Obtaining information about age- or stage-specific survivorship and

fecundity can be a lifetime’s work. There are two complementary

approaches that can reveal important information about a species.

Static life table data is typically one snapshot in time. It allows an

estimation of the age-distribution in a population.

Cohort life table data is obtained by following a cohort (a group of

individuals of the same species born at approximately the same time).

The cohort is tracked until there are no more survivors.
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Life table basics

The first three columns of Table 1 are the raw data we can hope to

obtain from following a cohort through its life. The other columns

are calculated from the raw data. The proportion of the initial cohort

still alive at age x, (l
x

) reveals the nature of the survivorship function.

The age-specific fecundity (m
x

) is calculated as the average number

of o↵spring per female in age-class x. The sum of this column tracks

the reproductive output of a hypothetical female that lives to the

maximum observed age. This sum is called the gross reprouctive ratio

(GRR).

GRR = Â
x

m

x

. (1)

In order to track the reproductive output of typical female (rather

than one that lives to the maximum observed age) we can take the

product of survivorship (to age x) and reproductive output (at age x)

and sum over all ages x.

Age Total

alive

No.

o↵spring

l

x

m

x

l

x

m

x

0 49 0 1 0 0

1 45 0 0.918 0 0

2 39 10 0.796 0.256 0.204

3 29 12 0.592 0.414 0.245

4 23 11 0.469 0.478 0.224

5 18 10 0.367 0.556 0.204

6 12 7 0.245 0.333 0.082

7 8 2 0.163 0.25 0.041

8 7 1 0.143 0.143 0.020

9 5 1 0.102 0.2 0.020

10 2 1 0.041 0.5 0.020

11 1 0 0.020 0 0

12 0 - - - -

GRR = 3.13 R0 = 1.06

Table 1: Dynamic life table of fe-

male Hainan Eld’s deer Cervus eldi

hainanus, from Nie et al. 2011
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Figure 2: Survivorship functions
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Figure 3: Survivorship profile of
female Hainan Eld’s deer

This quantity is called the net reproductive ratio R0, and tells us

how many o↵spring a typical individual will have.

R0 = Â
x

l

x

m

x

. (2)

Like the value l derived previously, we see that a population will

grow if R0 > 1 and decline if R0 < 1.

Survivorship curves

The way in which survivorship (l
x

) drops o↵ with age can be broadly

classified in to three di↵erent survivorship profiles or functions:
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Type Patterns Example organ-

ism

1 Juvenile and middle-age mortality low

Old-age mortality high

humans

2 Mortality approximately equal

at all age classes

slider turtles

3 High juvenile mortality low

Middle- and old-age mortality

oak trees

Table 2: Types of survivorship func-

tion

In the cases of Hainan Eld’s deer, the survivorship profile could be

classified as type 2 or 3.

Life expectancy

Additionally, the life table allows us to calculate life expectancy. We

orginally considered the l

x

column to be the proportion of an initial

cohort still alive at age x. This is equivalent to the probability that a

single individual is still alive at age x (assuming that age is the only

way in which individuals di↵er). In order to live to a given age, k,

an individual must survive all the preceding age classes. The proba-

bility of surviving from birth to age k is given by the area under the

survivorship curve up to age k. When we treat age as a continuously

changing quantity, this area would be expressed by integration:

Z
k

0
l

x

dx. (3)

For practical purposes, age is expressed in discrete classes. We can

approximate the area under the survivorship curve by a series of right-

angled trapezia, as illustrated in Figure 4.

Figure 4: Area under survivorship

curve composed of trapezoids of area

(l
x+1 + l

x

)/2.

We say “approximate” because we assume that individuals that die

in a certain age class do so at the halfway point. This assumption is

made by drawing straight lines between adjacent survivorship values

and is reasonable provided the interval represented by the age class is

not too large.

Life expectancy at birth is the area under the whole curve, i.e.

e

x

=
x=k

Â
x=0

(l
x+1 + l

x

)/2. (4)

We are not constrained to calculating life expectancy at birth,

we can start at some later age, j. In this case we divide by the sur-

vivorship of the lowest age considered (l
j

) because we assume (with

probability 1) that individuals have reached age j. The revised formula

e

x

=
1
l

j

x=k

Â
x=j

(l
x+1 + l

x

)/2, (5)
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where k is the maximum observed age, serves as a general formula,

replacing equation (4), since l0 = 1 by definition.

Age l

x

e

x

0 1 4.35

1 0.918 3.70

2 0.796 3.19

3 0.592 3.11

4 0.469 2.80

5 0.367 2.44

6 0.245 2.41

7 0.163 2.38

8 0.143 1.64

9 0.102 1.09

10 0.041 0.99

11 0.020 0.5

12 0 0

Table 3: Calculation of life expectancy

for female Hainan Eld’s deer Cervus

eldi hainanus, from Nie et al. 2011

Life expectancy (e
x

) is defined as expected years of life in addition

to current age x. Expected age at death is then

x + e

x

. (6)

Population dynamics and the stable age distribution concept

The information coded in a life table allows us to project population

dynamics forward in time from a set of initial conditions (initial values

of each age class). Consider a hypothetical life table with four age-

classes (0, 1, 2 & 3).

Age l

x

m

x

s
x

0 1 0 0.8

1 0.8 0 0.7

2 0.56 1 0.5

3 0.28 4 0

4 0 -

Table 4: Hypothetical life table with

three age classes, 0, 1, 2 & 3

We’ve introduced a new column s

x

which represents the fraction of

a given age class that survives to the next age

s

x

= l

x+1/l

x

. (7)

As the discrete time formulation represents annual birth pulses, the

“next” newborns (n0) will come from “current” individuals in an age

class x that successfully mature to the next age class and have the

appropriate number of o↵spring (m).

n0(t + 1) = n1(t)m1 + n2(t)m2 + · · · (8)
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where the n1, n2, · · · are formed from survivors of the preceeding age

class

n0(t + 1) = s0n0(t)m1 + s1n1(t)m2 + · · · (9)

Other age classes are simply determined by survivorship of the pre-

ceeding age class. For our hypothetical life table, we expect popula-

tions to change according to

n0(t + 1) = 0n0(t) + 0.7n1(t) + 2.0n2(t) + 0n3(t) (10)

n1(t + 1) = 0.8n0(t) + 0n1(t) + 0n2(t) + 0n3(t) (11)

n2(t + 1) = 0n0(t) + 0.7n1(t) + 0n2(t) + 0n3(t) (12)

n3(t + 1) = 0n0(t) + 0n1(t) + 0.5n2(t) + 0n3(t) (13)

At this stage we will adopt a matrix notation to describe these

dynamics, as this is useful for later analysis.

2

6664

n0
n1
n2
n3

3

7775

t+1

=

2

6664

0 0.7 2.0 0
0.8 0 0 0
0 0.7 0 0
0 0 0.5 0

3

7775

2

6664

n0
n1
n2
n3

3

7775

t

(14)

The matrix, M, is the projection matrix. Sometimes we also refer to a Leslie

matrix, named for the mathematician

credited with pioneering the technique

Population projection and transient dynamics

From an intial population state, n (e.g., 5 individuals in each class n0,

n1, n2 and n3), we can project the population forward in time using

the rule

n

t+1 = Mn

t

(15)

The dynamics illustrated in Figure 5 have a transient phase (ap-

proximately the first ten years) when the population sizes appear to

change erratically. Following this phase, the population sizes of each

class increase at the same rate. This means that the proportion of

individuals in a given age class does not change. We refer to this phe-

nomenon as a stable age distribution. Although the simulation only

projects forward twenty years, the model continues to exhibit the sta-

ble age distribution at all subsequent times (provided the numbers in

the matrix don’t change).

From an applied perspective (e.g., conservation or management)

there is considerable value in knowing which age classes will domi-

nate a population (or which will be rare). Models often predict that

stable age distributions are reached fairly quickly. Assuming that the
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Figure 5: Population projection of

equation 14 over 20 years

population has reached a stable age distribution allows for further in-

formation to be derived from life tables, including the generation time

and intrinsic growth rate.

As in populations without age structure, we can project an arbi-

trary number of time steps forward from an initial state by raising the

matrix to the appopriate power

n

t

= M

t

n0.

Computers are able perform such matrix multiplication routinely,

allowing us to estimate how populations (and their age-specific sub-

populations) are expected to change far into the future, under a set of

assumptions about the population processes.

Generation time and growth rate

The net reproductive ratio, R0, is a dimensionless quantity. It doesn’t

tell us anything about how quickly a population is growing or declin-

ing. To help us put a pace to population change, we can use a life

table to estimate the generation time, T

G

. First, we need a crisp def-

inition. While the definition is not unique, the mean age of females

when their o↵spring are born is popular and logical. From the life

table we note that the realized fecundity of an age class is

l

x

m

x

, (17)

and the proportion of overall fecundity attributable to an age class is

l

x

m

x

/R0. (18)
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The mean age at which females give birth, T

G

, is then the sum of

all ages weighted by their proportional contribution to overall fecun-

dity,

T

G

=
Â

x

xl

x

m

x

R0
. (19)

Provided the population is at its stable age distribution, then

R0 = n

T

G

/n0. (20)

When a population is growing or declining by a fixed factor, we

know from the earlier chapter on “Growth and decline” that

R0 = e

rT

G = lT

G , (21)

and so

r =
ln(R0)

T

G

(22)

and

l = R

1/T

G

0 . (23)

Eigenvectors and eigenvalues

The matrix (14) is a square matrix (same number of rows and columns)

and is used to calculate the sizes of age classes over time. Because

we’re projecting current population sizes into the future, we refer to

this matrix as a projection matrix. Certain attributes of the projection

matrix allow us to make valuable assessments of the population whose

dynamics it is describing. These attributes relate to the eigenvectors

and eigenvalues of this matrix.

An eigenvector, v, is a set of numbers (e.g., population sizes of

each age class) that when multiplied by the matrix, M, generates

a vector that is a constant multiple, l, of the original eigenvector,

meaning each element of the vector is multiplied by the factor, l. The

multiplying factor l is an eigenvalue of the matrix. Mathematically,

we usually describe this as

Mv = lv. (24)

There are as many eigenvalues as there are age classes (in our case

three). When there are only two or three age classes, eigenvalues can

be calculated by hand. More generally, we use computers to calculate

the eigenvalues of a matrix. The dominant eigenvalue is the one that

is biggest in size (ignoring sign) and tells us the factor by which the

population changes at each time step. In other words, the dominant
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eigenvalue is the same as the annual reproductive ratio, l, and it is

not a coincidence that this symbol is used in eigenvalue notation.

Calculating stable age distributions and reproudctive value

Each eigenvalue has a right and left eigenvector. The left eigenvector,

u, satisfies

uM = ul (25)

which for our example is

h
u0 u1 u2 u3

i

2

6664

0 0.7 2 0
0.8 0 0 0
0 0.7 0 0
0 0 0.5 0

3

7775
=

h
u0 u1 u2 u3

i
l. (26)

The right eigenvector, v, satisfies

Mv = lv (27)

which for our example is
2

6664

0 0.7 2 0
0.8 0 0 0
0 0.7 0 0
0 0 0.5 0

3

7775

2

6664

v0
v1
v2
v3

3

7775
= l

2

6664

v0
v1
v2
v3

3

7775
. (28)

The reason we care about these eigenvectors is that for the domi-

nant eigenvalue, the left eigenvector tells us the reproductive value of

each age class and the right eigenvector tells us the stable age distribu-

tion.

Figure 6: Loggerhead sea turtle
(Caretta caretta).

We’ve already met the concept of the stable age distribution, and

now we see that it can be extracted directly from the projection ma-

trix without computer simulation (though, in practice we would still

use a computer to calculate the eigenvectors). The numbers in the

right eigenvector, once normalized (i.e., scaled to sum to one), tell us

the proportion of the total population that will belong to any age class

once the population dynamics have moved passed the transient phase.

Matrix (14) has a dominant eigenvalue of l ⇡ 1.21 and the right

eigenvector associated with this scales to (0.46, 0.30, 0.17, 0.07) mean-

ing that the population will ultimately be composed of 46% of the

youngest age class, 30% of the second youngest age class, 17% of the

second oldest age class and 7% of the oldest age class, which is consis-

tent with Figure 5.

Reproductive value is defined as an individual’s expected contri-

bution to the population through both current and future reproduc-

tion, which will vary with age. For matrix (14) the normalized left
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eigenvector is (0.24, 0.37, 0.39, 0.0), so althouth the youngest age class

dominates the population its reproductive value is only third highest.

Stage-based structure: The conservation of loggerhead sea tur-

tles

It is sometimes more practical to group individuals into life stages,

which may be of unequal length. For example, the loggerhead sea

turtle Caretta caretta has survivorship and fecundity values that are

better related to stages of life than age (Table 5)

Class Size⇤

(cm)

Approx.

ages

Annual sur-

vivorship

Fecundity

(eggs/yr)

1. eggs, hatchlings <10 <1 0.6747 0

2. small juveniles 10.1-58.0 1-7 0.7857 0

3. large juveniles 58.1-80.0 8-15 0.6758 0

4. sub-adults 80.1-87.0 16-21 0.7425 0

5. novice breeders >87.0 22 0.8091 127

6. 1st yr remigrants >87.0 23 0.8091 4

7. mature breeders >87.0 24-54 0.8091 80

Table 5: Loggerhead sea turtle life

table (adapted from Crouse et al.
1987)

Much of the ideas about age structure apply to stage structure as

well. One important di↵erence is that as time progresses from t to t +

1 (where the time unit could be selected as days, months, years etc.,

depending on the organism) surviving individuals do not necessarily

pass to the next stage as they did with age structure. To illustrate

this, consider a generic three age class model
2

64
n0
n1
n2

3

75

t+1

=

2

64
0 f1 f2
s0 0 0
0 s1 0

3

75

2

64
n0
n1
n2

3

75

t

(29)

where f

x

is the age-specific fecundity and s

x

is the between-age sur-

vivorship probability.

We note that at each time step individuals either age into the next

category or die. If instead we assume a 3-stage class model, we include

the possibility of staying in the stage at subsequent time steps The matrix describing stage-based

dynamics is often named for the

pioneer of the technique, Lefkovitch
2

64
n0
n1
n2

3

75

t+1

=

2

64
h0 f1 f2
g0 h1 0
0 g1 h2

3

75

2

64
n0
n1
n2

3

75

t

(30)

Here, h

x

is defined as within-stage survivorship, and g

x

is the prob-

ability of developing to the next stage.

Test yourself

• In what ways is R0 a summary of a typical individual?
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• What are transient dynamics?

• What is the di↵erence between age-structured and stage-structured

models?

• Supposing regression to a stage experienced by an individual at an

earlier stage of life were possible (e.g. shrinkage in a size-structured

plant population). How might this information be coded in a pro-

jection matrix?

Further reading

• Matrix Population Models, H. Caswell, 2001, Sinauer Press.

• H. Nie et al. 2011. Life history pattern and fitness of an endangered

Hainan Eld’s deer population. Integrative Zoology 6(1): 63-70.

• D. T. Crouse et al. 1987. A Stage-Based Population Model for

Loggerhead Sea Turtles and Implications for Conservation. Ecology

68(5): 1412-1423.
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Homework

1. Calculate the life expectancy for all ages based on the data in Table

4

2. Using the data in Table 4 calculate R0, T

G

, r and l.

3. In less than 100 words, explain how stable age distributions and

reproductive value are useful data in conservation biology Hint: Relate their usefulness to their
definitions for full credit
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