Demography of Structured Populations

8 September 2009

Loggerhead Sea Turtle (Caretta caretta)

Classified as Endangered by IUCN under criterion A
(observed, estimated, inferred, or suspected decline of 50% over three generations)
Listed by Convention on migratory species
Listed under CITES
Listed by the US Endangered Species Act as Threatened since 1978

Threats to Loggerhead sea turtle population viability

Population management

- Beach closures
- Turtle Excluder Devices (TEDs)

Life history of Caretta caretta

Maturation

- Mature size is attained between age 12 yrs and 35 yrs (most studies: 20-25 years)
- Captives animals mature in 16 to 17 years
- Reproductive life span (after reaching maturity) is estimated at about 32 years

Reproduction

- Clutch size varies from ~ 70 to ~ 150 eggs and is correlated with body size
- Migration interval is one to five years
- Development time of eggs is $\sim 60 \mathrm{~d}$
- One to seven nests per year

Survival

- Lifespan in wild is 30-60 years
- Estimates of survivorship vary widely

Eggs/hatchlings: 6\%-80\%
Juveniles: ~70\%
Sub-adults ~ 75\%
Adults: ~80\%

Questions

(1) What is the population growth rate?
(2) How do the different life stages contribute to population growth?
(3) How great an effect must interventions have to be successful?

The Leslie matrix and related models, vital rates

- A generalization of the density-independent discrete time population growth process
- State variables are abundance of each age or class
- Constants are the vital rates:
- Survival/mortality
- May be interpreted as rate, proportion, or probability
- May also be interpreted as 1/(average lifespan)
- Fecundity/Fertility

- May be total offspring or total offspring living to next census
- Growth rate
- Regression

The Leslie matrix and related models, vital rates

- A generalization of the density-independent discrete time population growth process
- State variables are abundance of each age or class
- Constants are the vital rates:
- Survival/mortality
- May be interpreted as rate, proportion, or probability
- May also be interpreted as 1/(average lifespan)
- Fecundity/Fertility

- May be total offspring or total offspring living to next census
- Growth rate
- Regression

Note on notation: There are consistent patterns, but no universal notation

- death and mortality: $\mu, d, s=1-d, I_{x}=s_{1} s_{2} s_{3} \ldots s_{x}$
- birth and fecundity: f, F, β
- state variable: n, x
- projection matrix: L, A, Λ

The life history diagram

- Example
- What is maximum lifespan?
- What is age at first reproduction?
- What type is the survival curve?

A model: a system of difference equations

A vector of state variables represents what we wish to represent: size of the subpopulation at ages 0 through 6

A model: a system of difference equations

n_{0}
n_{1}
n_{2}
n_{3}

$$
\begin{aligned}
& n_{0}=f_{0}\left(n_{0,} n_{1}, n_{2,} n_{3}, n_{4}, n_{5}, n_{6}\right) \\
& n_{1}=f_{1}\left(n_{0,} n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right) \\
& n_{2}=f_{2}\left(n_{0,} n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right) \\
& n_{3}=f_{3}\left(n_{0,} n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right) \\
& n_{4}=f_{4}\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right) \\
& n_{5}=f_{5}\left(n_{0}, n_{1,} n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right) \\
& n_{6}=f_{6}\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)
\end{aligned}
$$

A set of difference equations relates population size to population size at the previous time

Here the equations are unspecified
More complete notation would have subscripts for time indexing - here it is understood that n 's on the left are one time step later than n's on the right

A model: a system of difference equations

What are the equations? Combinations of multiplication and addition

$$
\begin{array}{ll}
n_{0}=f_{0}(\boldsymbol{n}) & n_{0}=f_{0}(\boldsymbol{n}) \\
n_{1}=f_{1}(\boldsymbol{n}) & n_{1}=f_{1}(\boldsymbol{n}) \\
n_{2}=f_{2}(\boldsymbol{n}) & n_{2}=f_{2}(\boldsymbol{n}) \\
n_{3}=f_{3}(\boldsymbol{n}) & n_{3}=f_{3}(\boldsymbol{n}) \\
n_{4}=f_{4}(\boldsymbol{n}) & n_{4}=f_{4}(\boldsymbol{n}) \\
n_{5}=f_{5}(\boldsymbol{n}) & n_{5}=f_{5}(\boldsymbol{n}) \\
n_{6}=f_{6}(\boldsymbol{n}) & n_{6}=s_{5} n_{5}
\end{array}
$$

$$
\begin{gathered}
n_{0}=f_{0}(\boldsymbol{n}) \\
n_{1}=f_{1}(\boldsymbol{n}) \\
n_{2}=f_{2}(\boldsymbol{n}) \\
n_{3}=f_{3}(\boldsymbol{n}) \\
n_{4}=f_{4}(\boldsymbol{n}) \\
n_{5}=f_{5}(\boldsymbol{n}) \\
n_{6}=(0) n_{0}+(0) n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+s_{5} n_{5}+(0) n_{6}
\end{gathered}
$$

What are the equations? Combinations of multiplication and addition

$$
\begin{gathered}
n_{0}=f_{0}(\boldsymbol{n}) \\
n_{1}=f_{1}(\boldsymbol{n}) \\
n_{2}=(0) n_{0}+s_{1} n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
n_{3}=(0) n_{0}+(0) n_{1}+s_{2} n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
n_{4}=(0) n_{0}+(0) n_{1}+(0) n_{2}+s_{3} n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
n_{5}=(0) n_{0}+(0) n_{1}+(0) n_{2}+(0) n_{3}+s_{4} n_{4}+(0) n_{5}+(0) n_{6} \\
n_{6}=(0) n_{0}+(0) n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+s_{5} n_{5}+(0) n_{6}
\end{gathered}
$$

What are the equations? Combinations of multiplication and addition

The pattern is disrupted...

$$
\begin{gathered}
n_{0}=f_{0}(\boldsymbol{n}) \\
n_{1}=\square+(0) n_{1}+(0) n_{2}+F_{3} n_{3}+F_{4} n_{4}+F_{5} n_{5}+F_{6} n_{6} \\
n_{2}=(0) n_{0}+s_{1} n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
n_{3}=(0) n_{0}+(0) n_{1}+s_{2} n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
n_{4}=(0) n_{0}+(0) n_{1}+(0) n_{2}+s_{3} n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
n_{5}=(0) n_{0}+(0) n_{1}+(0) n_{2}+(0) n_{3}+s_{4} n_{4}+(0) n_{5}+(0) n_{6} \\
n_{6}=(0) n_{0}+(0) n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+s_{5} n_{5}+(0) n_{6}
\end{gathered}
$$

What are the equations? Combinations of multiplication and addition

Eliminate state variable n_{0}
Even though it exists it is never observed and is not required to solve any other equation - thus, it does not provide any additional information about the population growth process

Pre-reproductive census implies that F is realized fecundity

$$
\begin{aligned}
& n_{1}=(0) n_{1}+(0) n_{2}+F_{3} n_{3}+F_{4} n_{4}+F_{5} n_{5}+F_{6} n_{6} \\
& n_{2}=s_{1} n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{3}=(0) n_{1}+s_{2} n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{4}=(0) n_{1}+(0) n_{2}+s_{3} n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{5}=(0) n_{1}+(0) n_{2}+(0) n_{3}+s_{4} n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{6}=(0) n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+s_{5} n_{5}+(0) n_{6}
\end{aligned}
$$

Matrix Representation (cf. Appendix 2, p. 418)

- Linear algebra is the study of sets of linear equations and their transformations

$$
\begin{aligned}
& n_{1}=(0) n_{1}+(0) n_{2}+F_{3} n_{3}+F_{4} n_{4}+F_{5} n_{5}+F_{6} n_{6} \\
& n_{2}=s_{1} n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{3}=(0) n_{1}+s_{2} n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{4}=(0) n_{1}+(0) n_{2}+s_{3} n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{5}=(0) n_{1}+(0) n_{2}+(0) n_{3}+s_{4} n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{6}=(0) n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+s_{5} n_{5}+(0) n_{6}
\end{aligned}
$$

Matrix Representation (cf. Appendix 2, p. 418)

- Linear algebra makes liberal use of matrix representation

$$
\begin{aligned}
& n_{1}=(0) n_{1}+(0) n_{2}+F_{3} n_{3}+F_{4} n_{4}+F_{5} n_{5}+F_{6} n_{6} \\
& n_{2}=s_{1} n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{3}=(0) n_{1}+s_{2} n_{2}+(0) n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{4}=(0) n_{1}+(0) n_{2}+s_{3} n_{3}+(0) n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{5}=(0) n_{1}+(0) n_{2}+(0) n_{3}+s_{4} n_{4}+(0) n_{5}+(0) n_{6} \\
& n_{6}=(0) n_{1}+(0) n_{2}+(0) n_{3}+(0) n_{4}+s_{5} n_{5}+(0) n_{6}
\end{aligned}
$$

$$
\left(\begin{array} { l }
{ n _ { 1 } } \\
{ n _ { 2 } } \\
{ n _ { 3 } } \\
{ n _ { 4 } } \\
{ n _ { 5 } } \\
{ n _ { 6 } }
\end{array} \left|=\left|\begin{array}{cccccc}
(0) n_{1} & (0) n_{2} & F_{3} n_{3} & F_{4} n_{4} & F_{5} n_{5} & F_{6} n_{6} \\
s_{1} n_{1} & (0) n_{2} & (0) n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & s_{2} n_{2} & (0) n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & s_{3} n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & (0) n_{3} & s_{4} n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & (0) n_{3} & (0) n_{4} & s_{5} n_{5} & (0) n_{6}
\end{array}\right|\right.\right.
$$

Matrix \times Matrix Multiplication

- The rule of matrix multiplication when a matrix is multiplied by another matrix
- Multiply row vectors by column vectors
- The multiplication of row m and column n, the vector product lives in element m, n of the product matrix

$$
\begin{gathered}
\boldsymbol{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
\boldsymbol{A} \boldsymbol{B}=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right)
\end{gathered}
$$

- Tutorials
- http://people.hofstra.edu/Stefan_Waner/realWorld/tutorialsf1/frames3_2.html
- http://www.purplemath.com/modules/mtrxmult.htm
- http://www.mai.liu.se/~halun/matrix/

Matrix \times Matrix Multiplication

- The rule of matrix multiplication when a matrix is multiplied by another matrix
- Multiply row vectors by column vectors
- The multiplication of row m and column n, the vector product lives in element m, n of the product matrix

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$ dimensions must be the same. The "outer" dimensions give the dimension of the product matrix. In this case two 2×2 matrices multiple to give a 2×2 matrix. Similarly, one can multiple a 4×2 matrix by a 2×3 matrix but not a 2×3 matrix by a 4×2 matrix.

- Tutorials
- http://people.hofstra.edu/Stefan_Waner/realWorld/tutorialsf1/frames3_2.html
- http://www.purplemath.com/modules/mtrxmult.htm
- http://www.mai.liu.se/~halun/matrix/

Vector \times Vector Multiplication (a special case)

- The rule of vector multiplication
- Vectors must be same length

$$
\boldsymbol{a}=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right), \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

- First vector a row
- Second vector a column

$$
\boldsymbol{c}=\boldsymbol{a} \boldsymbol{b}=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)
$$

Matrix \times Vector Multiplication (another special case)

- The rule of matrix multiplication when a matrix is multiplied by a vector
- A vector is a special case of a matrix so matrix-vector multiplication is a special case of matrix multiplication

$$
\begin{gathered}
\boldsymbol{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \boldsymbol{b}=\binom{b_{1}}{b_{2}} \\
\boldsymbol{A} \boldsymbol{b}=\binom{a_{11} b_{1}+a_{12} b_{2}}{a_{21} b_{1}+a_{22} b_{2}}
\end{gathered}
$$

Matrix \times Vector Multiplication

- The rule of matrix multiplication when a matrix is multiplied by a vector

$$
\begin{gathered}
\boldsymbol{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \boldsymbol{b}=\binom{b_{1}}{b_{2}} \\
\boldsymbol{A} \boldsymbol{b}=\left(\begin{array}{ll}
a_{11} b_{1} & a_{12} b_{2} \\
a_{21} b_{1} & a_{22} b_{2}
\end{array}\right)
\end{gathered}
$$

$$
\left|\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3} \\
n_{4} \\
n_{5} \\
n_{6}
\end{array}\right|=\left|\begin{array}{cccccc}
(0) n_{1} & (0) n_{2} & F_{3} n_{3} & F_{4} n_{4} & F_{5} n_{5} & F_{6} n_{6} \\
s_{1} n_{1} & (0) n_{2} & (0) n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & s_{2} n_{2} & (0) n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & s_{3} n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & (0) n_{3} & s_{4} n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & (0) n_{3} & (0) n_{4} & s_{5} n_{5} & (0) n_{6}
\end{array}\right| \leq
$$

Matrix \times Vector Multiplication

- We now have a representation which separates our constant from our state variables and will allow us to track the vector of size structured abundance over time

$$
\left|\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3} \\
n_{4} \\
n_{5} \\
n_{6}
\end{array}\right|=\left|\begin{array}{cccccc}
(0) n_{1} & (0) n_{2} & F_{3} n_{3} & F_{4} n_{4} & F_{5} n_{5} & F_{6} n_{6} \\
s_{1} n_{1} & (0) n_{2} & (0) n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & s_{2} n_{2} & (0) n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & s_{3} n_{3} & (0) n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & (0) n_{3} & s_{4} n_{4} & (0) n_{5} & (0) n_{6} \\
(0) n_{1} & (0) n_{2} & (0) n_{3} & (0) n_{4} & s_{5} n_{5} & (0) n_{6}
\end{array}\right|
$$

Projected abundance (state variables)

Projection matrix (constants)

Past abundance (state variables)

$$
\left.\left.\begin{array}{l}
\boldsymbol{\nabla} \\
n_{1} \\
n_{2} \\
n_{3} \\
n_{4} \\
n_{5} \\
n_{6}
\end{array}\right) \left.=\left(\begin{array}{cccccc}
0 & 0 & F_{3} & F_{4} & F_{5} & F_{6} \\
s_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & s_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & s_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & s_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & s_{5} & 0
\end{array}\right) \right\rvert\, \begin{array}{l}
\boldsymbol{1} \\
n_{1} \\
n_{2} \\
n_{3} \\
n_{4} \\
n_{5} \\
n_{6}
\end{array}\right)
$$

Structure of the Leslie Matrix

- A projection matrix structured this way is commonly called a Leslie matrix after P.H. Leslie who worked with Charles Elton at the Oxford Bureau of Animal Population

Zero everywhere else

Compact Notation

- We can now write a simple equation for structured population growth

$$
n_{1}=L n_{0}
$$

- Substituting, we extend to the next time step

$$
n_{2}=L n_{1}=L\left(L n_{0}\right)=L L n_{0}=L^{2} n_{0}
$$

- In general

$$
\boldsymbol{n}_{t}=\boldsymbol{L}^{t} \boldsymbol{n}_{0} \quad \begin{aligned}
& \text { Use this model to numerically solve structured } \\
& \text { population models }
\end{aligned}
$$

More insight...

- Note the similarity between the solutions of the unstructured model...

$$
n_{t}=\lambda^{t} n_{0}
$$

- And the structured model

$$
n_{t}=L^{t} n_{0}
$$

λ is the dominant eigenvalue of the Leslie matrix

- Here we look for a deep connection between the structured and unstructured models
- This section follows pp. 66-72 in Case

λ is the dominant eigenvalue of the Leslie matrix

- Here we look for a deep connection between the structured and unstructured models
- This section follows pp. 66-72 in Case
- After transient dynamics no longer strongly affect the population the relative abundance of the different age classes stays the same - the so called stable age distribution
- This can be proved mathematically (not required for this class)
- In lab we will study this property numerically, particularly...
- We will demonstrate to ourselves that the matrix operations and the original equations arrive at the same answer
- We will study how deviations from the stable age distribution affect transient dynamics and how long these transients last

λ is the dominant eigenvalue of the Leslie matrix

- Our method will be to proceed by conjecture...
- CONJECTURE: There is some vector \boldsymbol{x} such that multiplication by a scalar gives the same result as multiplication by L

$$
L \boldsymbol{x}=\lambda \boldsymbol{x}
$$

λ is the dominant eigenvalue of the Leslie matrix

- Our method will be to proceed by conjecture....
- CONJECTURE: There is some vector \boldsymbol{x} such that multiplication by a scalar gives the same result as multiplication by L

$$
L x=\lambda x
$$

- If λ exists and \boldsymbol{x} has properties such that the above equation is true, then we could replace our matrix equation

$$
n_{t}=\boldsymbol{L}^{t} \boldsymbol{n}_{\mathbf{0}}
$$

with

$$
\boldsymbol{n}_{\boldsymbol{t}}=\boldsymbol{g} \lambda^{t} \boldsymbol{x} \quad \begin{aligned}
& g \text { depends on the initial population vector } \\
& \\
& \lambda \text { is the long run growth rate } \\
& \\
& x \text { is the stable age distribution }
\end{aligned}
$$

λ is the dominant eigenvalue of the Leslie matrix

- It turns out that for a large class of matrices (of which all Leslie matrices are a subset) there is such a quantity - it is called the dominant eigenvalue
- The dominant eigenvalue λ of the Leslie matrix L gives the asymptotic geometric growth rate
- For small matrices (two to three age classes) λ can be obtained analytically using the characteristic equation (not req'd for this course)
- Otherwise, the dominant eigenvalue can be obtained numerically
- In MATLAB use eig
- In R use eigen
- \boldsymbol{x} (the stable age distribution is the (right) eigenevctor)
- This rate is asymptotic because it is approached as time goes to infinity, in practice λ is achieved with tolerable precision within some tens of time steps
- The left eigenvector \boldsymbol{v} (the right eigenvector of the transpose of \boldsymbol{L}) gives reproductive value, i.e. $\boldsymbol{v}_{\mathrm{i}}$ is the average number of future offspring of an individual of age i

From age-structured to stage-structured: the Lefkovich matrix

From age-structured to stage-structured: the Lefkovich matrix

Stage-specific fecundity on the top line

Probability of remaining in the same class on the sub-diagonal

Also called "transition matrix"
All demographic transitions of the form "from-to" go in matrix element (m, n)

By the law of total probability

$$
p_{i}+g_{i}+\mu_{i}=1
$$

Growth rate of Caretta caretta

$\left.\left\lvert\, \begin{array}{l}n_{1} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{5} \\ n_{6} \\ n_{7}\end{array}\right.\right)=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 127 & 4 & 80 \\ 0.6747 & 0.7370 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.0486 & 0.6610 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.0147 & 0.6907 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.0518 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.8091 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.8089 & 0.8089\end{array}| | \begin{array}{l}n_{1} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{5} \\ n_{6} \\ n_{7}\end{array}\right)$

Questions

(1) What is the population growth rate?
$\lambda=0.945$
(2) How do the different life stages contribute to population growth?
(3) How great an effect must interventions have to be successful?

How do the different life stages contribute to population growth?

Sensitivity - rate of change of λ with respect to $\alpha_{i, j}$ Elasticity - Proportional rate of change of λ with respect to $\alpha_{i, j}$

$$
\frac{\partial \lambda}{\partial \alpha_{i, j}}=\frac{v_{i} w_{j}}{\langle\boldsymbol{w}, \boldsymbol{v}\rangle}
$$

$$
e_{i, j}=\frac{\alpha_{i, j}}{\lambda} \frac{\partial \lambda}{\partial \alpha_{i, j}}=\frac{\partial \log \lambda}{\partial \log \alpha_{i, j}}
$$

Elasticity of Caretta caretta growth

Decreasing hatchling survival to 0 does not prevent decline

Elasticity of matrix elements

Questions

(1) What is the population growth rate?
$\lambda=0.945$
(2) How do the different life stages contribute to population growth? Key life stages are juveniles and subadult (3) How great an effect must interventions have to be successful?

Simulating effects of policy

Immature survivorship (nearshore bycatch) improved

Juvenile-Adult survivorship (TEDs) improved

Juvenile-Adult survivorship (TEDs) Improved, but less optimistic about hatchling survival
]'Abi.f. 6 . Thuce management scenarios jnvolving changes in mortality in various life stages of logecrhead sca turtles. For each scenario. the stuges are listed along with the old and the new matrix elements ${ }^{*}(P$.. (G)) and the resuline $\lambda . .$. and r.

Immature survivorship increased to 0.80					
2	P_{2}	0.7370	(0.74695		
	G_{2}	0.0486	0.0531		
3	p_{2}	0.6610	0.7597	1.06	$+0.06$
	G_{1}	0.0147	0.0403	1.06	$+3.06$
4	P_{1}	0.6907	(1.7284		
	G_{4}	0.0518	0.0710		
Larye juveniles and subadults $=0.80$; adults -0.85					
3	P_{3}	0.6610	0.7597		
	${ }_{3}$	0.0147	0.0403		
4	F_{1}	0.6907	0.7289		
	G_{6}	0.0518	0.0710	1.06	10.06
5	\vec{B}_{5}	0.8091	0.8500		
6	CH_{6}	0.8091	0.8500		
7	${ }^{\prime}$	(1.8089	0.8500		
First-year - 0.33735; large juveniles, subadults - 0.80; adults - 0.85					
1	G_{1}	0.6747	0.33735		
3	P_{3}	0.6610	0.7597		
	仿,	(1,9)147	0.0403		
4	P_{4}	0.6907	0.7289		
	G_{4}	0.0518	0.0710	1.02	+0.02
5	6	0.8091	0.8500		
6	仿,	(1.81)91	0.8500		
7	$P_{\text {P }}$	0.8089	0.8500		

to the next stage. to the next stage.

Questions

(1) What is the population growth rate?
$\lambda=0.945$
(2) How do the different life stages contribute to population growth?
Key life stages are juveniles and subadult
(3) How great an effect must interventions have to be successful?
Even 100% survival of eggs/hatchlings would not cause λ to become greater than 1
A combination of beeach closures and increased survivorship (due to TEDs) could be effective

Life cycle of Teasel (Dipsacus sylvestris)

Two properties guarantee an asymptotic growth rate

- Irreducibility - The life cycle graph contains a path from every node to every other node
- Primitivity - A projection matrix is primitive if it become positive (every element >0) when raised to a sufficiently high power
- A sufficient condition for primitivity is the existence of two adjacent classes with positive fertility

Summary

- Age- and stage-structured populations have a growth rate analogous to the growth rate of unstructured populations
- This growth rate is given by the dominant eigenvalue of the population projection matrix
- This growth rate is approached asymptotically
- Transient dynamics may occur before the asymptotic growth rate is achieved
- Populations growing according to an age-structured model have a stable age distribution
- Sensitivity and elasticity analysis may be used to determine which ages/stages contribute most to population growth
- (The Lotka-Euler equation is the characteristic polynomial of the Leslie matrix and related age specific reproduction and cumulative survival to the growth rate λ)
- (The McKendrick-von Foerster model is a partial differential equation model for age-structured growth in continuous time)

