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Loggerhead Sea Turtle (Caretta caretta)

Classified as Endangered by IUCN under criterion A
(observed, estimated, inferred, or suspected decline of 50% over three generations)

Listed by Convention on migratory species
Listed under CITES
Listed by the US Endangered Species Act as Threatened since 1978



  

Threats to Loggerhead sea turtle population viability

Population management
- Beach closures
- Turtle Excluder Devices (TEDs)



  

Life history of Caretta caretta

Maturation
 Mature size is attained between age 12  yrs and 35 yrs (most studies: 20-25 years)

 Captives animals mature in 16 to 17 years

 Reproductive life span (after reaching maturity) is estimated at about 32 years

Reproduction
 Clutch size varies from ~70 to ~150 eggs and is correlated with body size 
 Migration interval is one to five years
 Development time of eggs is ~60 d
 One to seven nests per year

Survival
 Lifespan in wild is 30-60 years

 Estimates of survivorship vary widely
Eggs/hatchlings: 6%-80%
Juveniles: ~70%
Sub-adults ~ 75%
Adults: ~80%



  

Questions

(1) What is the population growth rate?

(2) How do the different life stages contribute to 
population growth?

(3) How great an effect must interventions have to 
be successful?



  

The Leslie matrix and related models, vital rates

● A generalization of the density-independent discrete time population 
growth process

● State variables are abundance of each age or class

● Constants are the vital rates:

– Survival/mortality
● May be interpreted as rate, proportion, or probability
● May also be interpreted as 1/(average lifespan)

– Fecundity/Fertility
● May be total offspring or total offspring living to next census

– Growth rate

– Regression



  

The Leslie matrix and related models, vital rates

● A generalization of the density-independent discrete time population 
growth process

● State variables are abundance of each age or class

● Constants are the vital rates:

– Survival/mortality
● May be interpreted as rate, proportion, or probability
● May also be interpreted as 1/(average lifespan)

– Fecundity/Fertility
● May be total offspring or total offspring living to next census

– Growth rate

– Regression
Note on notation: There are consistent patterns, but no universal notation
● death and mortality: , d, s=1-d, l

x
=s

1
s

2
s

3
...s

x

● birth and fecundity: f, F, 
● state variable: n, x
● projection matrix: L, A, 



  

The life history diagram

● Example

– What is maximum lifespan?

– What is age at first reproduction?

– What type is the survival curve?
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A model: a system of difference equations
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A vector of state variables
represents what we wish to represent: 
size of the subpopulation at ages
0 through 6



  

A model: a system of difference equations
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n0= f 0n0,n1, n2, n3, n4, n5,n6

n1= f 1n0,n1,n2,n3, n4, n5, n6

n2= f 2n0, n1,n2, n3,n4,n5,n6

n3= f 3n0,n1, n2,n3, n4, n5,n6

n4= f 4n0, n1,n2, n3,n4,n5,n6

n5= f 5n0,n1,n2,n3, n4, n5, n6

n6= f 6n0,n1, n2, n3, n4, n5,n6

n0

n1

n2

n3

n4

n5

n6

A set of difference equations relates
population size to population size at the
previous time

Here the equations are unspecified

More complete notation would have
subscripts for time indexing – here it
is understood that n's on the left are
one time step later than n's on the right



  

A model: a system of difference equations
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n0= f 0n0,n1,n2,n3,n4,n5,n6

n1= f 1n0,n1,n2,n3,n4,n5,n6

n2= f 2n0,n1,n2,n3,n4,n5,n6

n3= f 3n0,n1,n2,n3,n4,n5,n6

n4= f 4n0,n1,n2,n3,n4,n5,n6

n5= f 5n0,n1,n2,n3,n4,n5,n6

n6= f 6n0,n1,n2,n3,n4,n5,n6

n0

n1

n2
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n5

n6

n0= f 0n
n1= f 1n
n2= f 2n
n3= f 3n
n4= f 4n
n5= f 5n
n6= f 6n

More concise notion to represent 
population size as a vector



  

What are the equations? Combinations of multiplication 
and addition
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n0= f 0n
n1= f 1n
n2= f 2n
n3= f 3n
n4= f 4n
n5= f 5n
n6=s5n5

n0= f 0n
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n6=0n00n10n20n30n4s5 n50n6

Abundance of six-year-olds depends only on
number of five-year-olds in the year before

For the time being, we add in the remaining zeros



  

What are the equations? Combinations of multiplication 
and addition
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A pattern emerges...



  

What are the equations? Combinations of multiplication 
and addition
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n0= f 0(n)
n1=❑+(0)n1+(0)n2+F 3n3+F 4n4+F 5 n5+F 6n6

n2=(0)n0+ s1n1+(0)n2+(0)n3+(0)n4+(0)n5+(0)n6

n3=(0)n0+(0)n1+s2 n2+(0)n3+(0)n4+(0)n5+(0)n6

n4=(0)n0+(0)n1+(0)n2+s3n3+(0)n4+(0)n5+(0)n6

n5=(0)n0+(0)n1+(0)n2+(0)n3+s4n4+(0)n5+(0)n6

n6=(0)n0+(0)n1+(0)n2+(0)n3+(0)n4+s5n5+(0)n6

The pattern is disrupted...



  

What are the equations? Combinations of multiplication 
and addition
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=0.3 s

2
=0.9 s

3
=0.9 s

4
=0.2

F
3
=2

F
4
=4

F
5
=6

6

F
6
=12

s
5
=0.2

n1=0n10n2F 3 n3F 4n4F 5n5F 6n6

n2=s1n10n20n30n40n50n6

n3=0n1s2n20n30n40n50n6

n4=0n10n2s3n30n40n50n6

n5=0n10n20n3s4n40n50n6

n6=0n10n20n30n4s5n50n6

Eliminate state variable n
0

Even though it exists it is never
observed and is not required to
solve any other equation – thus,
it does not provide any additional
information about the population
growth process

Pre-reproductive census implies 
that F is realized fecundity



  

Matrix Representation (cf. Appendix 2, p. 418)

● Linear algebra is the study of sets of linear equations and their transformations

n1=0n10n2F 3n3F 4n4F 5n5F 6n6

n2=s1n10n20n30n40n50n6

n3=0n1s2n20n30n40n50n6

n4=0n10n2s3n30n40n50n6

n5=0n10n20n3s4n40n50n6

n6=0n10n20n30n4s5n50n6

Is our model a system of linear equations?



  

Matrix Representation (cf. Appendix 2, p. 418)

● Linear algebra makes liberal use of matrix representation

n1=0n10n2F 3n3F 4n4F 5n5F 6n6

n2=s1 n10n20n30n40n50n6

n3=0n1s2n20n30n40n50n6

n4=0n10n2s3n30n40n50n6

n5=0n10n20n3s4n40n50n6

n6=0n10n20n30n4s5n50n6


n1

n2

n3

n4

n5

n6

=
0n1 0n2 F 3n3 F 4n4 F 5n5 F 6 n6

s1n1 0n2 0n3 0n4 0n5 0n6

0n1 s2n2 0n3 0n4 0n5 0n6

0n1 0n2 s3n3 0n4 0n5 0n6

0n1 0n2 0n3 s4n4 0n5 0n6

0n1 0n2 0n3 0n4 s5n5 0n6


Plus signs are implied



  

Matrix × Matrix Multiplication

● The rule of matrix multiplication when a matrix is multiplied by another matrix

● Multiply row vectors by column vectors

● The multiplication of row m and column n, the vector product lives in element m,n of 
the product matrix

● Tutorials

– http://people.hofstra.edu/Stefan_Waner/realWorld/tutorialsf1/frames3_2.html

– http://www.purplemath.com/modules/mtrxmult.htm

– http://www.mai.liu.se/~halun/matrix/

A=a11 a12

a21 a22
 , B=b11 b12

b21 b22


AB=a11b11a12b21 a11b12a12b22

a21b11a22 b21 a21b12a22b22


http://people.hofstra.edu/Stefan_Waner/realWorld/tutorialsf1/frames3_2.html
http://www.purplemath.com/modules/mtrxmult.htm
http://www.mai.liu.se/~halun/matrix/


  

Matrix × Matrix Multiplication

● The rule of matrix multiplication when a matrix is multiplied by another matrix

● Multiply row vectors by column vectors

● The multiplication of row m and column n, the vector product lives in element m,n of 
the product matrix

● Tutorials

– http://people.hofstra.edu/Stefan_Waner/realWorld/tutorialsf1/frames3_2.html

– http://www.purplemath.com/modules/mtrxmult.htm

– http://www.mai.liu.se/~halun/matrix/

A= a11 a12

a21 a22
 ,B= b11 b12

b21 b22


AB= a11b11a12b21 a11b12a12b22

a21b11a22b21 a21b12a22b22


It follows that to multiply two matrices the “inner” 
dimensions must be the same. The “outer” 
dimensions give the dimension of the product
matrix. In this case two 2×2 matrices multiple to
give a 2×2 matrix. Similarly, one can multiple a
4×2 matrix by a 2×3 matrix but not a 2×3 matrix
by a 4×2 matrix.

2×2 2×2

inner

outer

http://people.hofstra.edu/Stefan_Waner/realWorld/tutorialsf1/frames3_2.html
http://www.purplemath.com/modules/mtrxmult.htm
http://www.mai.liu.se/~halun/matrix/


  

Vector × Vector Multiplication (a special case)

● The rule of vector multiplication

● Vectors must be same length

– First vector a row

– Second vector a column

a= a1 a2 a3 , b=
b1

b2

b3


c=ab= a1b1a2b2a3b3



  

Matrix × Vector Multiplication (another special case)

● The rule of matrix multiplication when a matrix is multiplied by a vector

● A vector is a special case of a matrix so matrix-vector multiplication is a special case 
of matrix multiplication

A= a11 a12

a21 a22
 ,b= b1

b2


Ab= a11b1a12b2

a21b1a22b2




  

Matrix × Vector Multiplication

● The rule of matrix multiplication when a matrix is multiplied by a vector

A= a11 a12

a21 a22
 ,b= b1

b2


Ab= a11b1 a12b2

a21b1 a22b2



n1

n2

n3

n4

n5

n6

=
0n1 0n2 F 3n3 F 4n4 F 5n5 F 6n6

s1n1 0n2 0n3 0n4 0n5 0n6

0n1 s2n2 0n3 0n4 0n5 0n6

0n1 0n2 s3n3 0n4 0n5 0n6

0n1 0n2 0n3 s4n4 0n5 0n6

0n1 0n2 0n3 0n4 s5n5 0n6

 How can we take the right hand
side of our equation and re-represent
it in terms a a matrix product?



  

Matrix × Vector Multiplication

● We now have a representation which separates our constant from our state variables 
and will allow us to track the vector of size structured abundance over time


n1

n2

n3

n4

n5

n6

=
0n1 0n2 F 3n3 F 4n4 F 5 n5 F 6n6

s1 n1 0n2 0n3 0n4 0n5 0n6

0n1 s2n2 0n3 0n4 0n5 0n6

0n1 0n2 s3 n3 0n4 0n5 0n6

0n1 0n2 0n3 s4n4 0n5 0n6

0n1 0n2 0n3 0n4 s5n5 0n6



n1

n2

n3

n4

n5

n6

=
0 0 F 3 F 4 F 5 F 6

s1 0 0 0 0 0
0 s2 0 0 0 0

0 0 s3 0 0 0

0 0 0 s4 0 0
0 0 0 0 s5 0

 
n1

n2

n3

n4

n5

n6


Past abundance (state variables)

Projected abundance (state variables)

Projection matrix (constants)



  

Structure of the Leslie Matrix

● A projection matrix structured this way is commonly called a Leslie matrix after P.H. 
Leslie who worked with Charles Elton at the Oxford Bureau of Animal Population


n1

n2

n3

n4

n5

n6

=
0 0 F 3 F 4 F 5 F 6

s1 0 0 0 0 0
0 s2 0 0 0 0

0 0 s3 0 0 0

0 0 0 s4 0 0
0 0 0 0 s5 0

 
n1

n2

n3

n4

n5

n6

Survivorship on the sub-diagonal

Age-specific fecundity on the top line

Zero everywhere else



  

Compact Notation

● We can now write a simple equation for structured population growth

● Substituting, we extend to the next time step

● In general

n1=Ln0

n2=Ln1=L Ln0=LLn0=L
2n0

nt=L
t n0

matrix multiplication

Use this model to numerically solve structured
population models



  

More insight...

● Note the similarity between the solutions of the unstructured model...

● And the structured model

nt=L
t n0

nt=
t n0



  

 is the dominant eigenvalue of the Leslie matrix

● Here we look for a deep connection between the structured and unstructured models

● This section follows pp. 66-72 in Case



  

● Here we look for a deep connection between the structured and unstructured models

● This section follows pp. 66-72 in Case

● After transient dynamics no longer strongly affect the population the relative 
abundance of the different age classes stays the same – the so called stable age 
distribution

– This can be proved mathematically (not required for this class)

– In lab we will study this property numerically, particularly...

● We will demonstrate to ourselves that the matrix operations and the original 
equations arrive at the same answer

● We will study how deviations from the stable age distribution affect transient 
dynamics and how long these transients last

 is the dominant eigenvalue of the Leslie matrix



  

 is the dominant eigenvalue of the Leslie matrix

● Our method will be to proceed by conjecture....

● CONJECTURE: There is some vector x such that multiplication by a scalar gives the 
same result as multiplication by L

L x= x



  

 is the dominant eigenvalue of the Leslie matrix

● Our method will be to proceed by conjecture....

● CONJECTURE: There is some vector x such that multiplication by a scalar gives the 
same result as multiplication by L

● If exists and x has properties such that the above equation is true, then we could 
replace our matrix equation

with

L x= x

nt=L
t n0

nt=g 
t x

g depends on the initial population vector

is the long run growth rate

x is the stable age distribution



  

 is the dominant eigenvalue of the Leslie matrix

● It turns out that for a large class of matrices (of which all Leslie matrices are a subset) 
there is such a quantity – it is called the dominant eigenvalue

● The dominant eigenvalue  of the Leslie matrix L gives the asymptotic geometric 
growth rate

– For small matrices (two to three age classes)  can be obtained analytically using 
the characteristic equation (not req'd for this course)

– Otherwise, the dominant eigenvalue can be obtained numerically

● In MATLAB use eig

● In R use eigen

– x (the stable age distribution is the (right) eigenevctor)

– This rate is asymptotic because it is approached as time goes to infinity, in 
practice  is achieved with tolerable precision within some tens of time steps

– The left eigenvector v (the right eigenvector of the transpose of L) gives  
reproductive value, i.e. v

i
 is the average number of future offspring of an 

individual of age i



  

From age-structured to stage-structured:
the Lefkovich matrix


n1

n2

n3

n4

n5

n6

n7

=
p1 F 2 F 3 F 4 F 5 F 6 F 7

g1 p2 0 0 0 0 0
0 g 2 p3 0 0 0 0
0 0 g3 p4 0 0 0
0 0 0 g 4 p5 0 0
0 0 0 0 g5 p6 0
0 0 0 0 0 g 6 p6


n1

n2

n3

n4

n5

n6

n7


Probability of “growth” on the sub-diagonal

Stage-specific fecundity on the top line



  


n1

n2

n3

n4

n5

n6

n7

=
p1 F 2 F 3 F 4 F 5 F 6 F 7

g1 p2 0 0 0 0 0
0 g 2 p3 0 0 0 0
0 0 g3 p4 0 0 0
0 0 0 g 4 p5 0 0
0 0 0 0 g5 p6 0
0 0 0 0 0 g 6 p6


n1

n2

n3

n4

n5

n6

n7



From age-structured to stage-structured:
the Lefkovich matrix

Probability of remaining in the same class
on the sub-diagonal

Stage-specific fecundity on the top line

Zero everywhere else

Also called “transition matrix”

All demographic transitions of the 
form “from—to” go in matrix element
(m,n)

By the law of total probability

pig ii=1



  

Growth rate of Caretta caretta


n1

n2

n3

n4

n5

n6

n7

=
0 0 0 0 127 4 80

0.6747 0.7370 0 0 0 0 0
0 0.0486 0.6610 0 0 0 0
0 0 0.0147 0.6907 0 0 0
0 0 0 0.0518 0 0 0
0 0 0 0 0.8091 0 0
0 0 0 0 0 0.8089 0.8089

 
n1

n2

n3

n4

n5

n6

n7


We obtain the dominant eigenvalue =0.945 and eigenvector
x=(0.2907, 0.9430, 0.1613, 0.0093, 0.0005, 0.0004, 0.0026)



  

Questions

(1) What is the population growth rate?
=0.945
(2) How do the different life stages contribute to 
population growth?

(3) How great an effect must interventions have to 
be successful?



  

How do the different life stages 
contribute to population growth?

Sensitivity – rate of change of  with respect to 
i,j

Elasticity – Proportional rate of change of  with 
respect to 

i,j

∂

∂ i , j

=
v i w j

〈w ,v 〉
e i , j=

i , j


∂

∂i , j
=

∂ log 

∂ log  i , j



  

Elasticity of Caretta caretta growth

Elasticity of matrix
elements

Elasticity of age-specific survival

Decreasing hatchling survival to 0 does not prevent decline



  

Questions

(1) What is the population growth rate?
=0.945
(2) How do the different life stages contribute to 
population growth?
Key life stages are juveniles and subadult
(3) How great an effect must interventions have to 
be successful?



  

Simulating effects of policy

Immature survivorship (nearshore bycatch) 
improved

Juvenile-Adult survivorship (TEDs) 
improved

Juvenile-Adult survivorship (TEDs) 
Improved, but less optimistic about hatchling
survival



  

Questions

(1) What is the population growth rate?
=0.945
(2) How do the different life stages contribute to 
population growth?
Key life stages are juveniles and subadult
(3) How great an effect must interventions have to 
be successful?
Even 100% survival of eggs/hatchlings would not 
cause to become greater than 1
A combination of beeach closures and increased 
survivorship (due to TEDs) could be effective



  

Life cycle of Teasel (Dipsacus sylvestris)

Seeds

1st yr
Dormant
Seeds

2nd yr
Dormant
Seeds

Small
rosettes

Medium
rosettes

F
5
=6

Large
rosettes

F
6
=12

Flowering



  

Two properties guarantee an 
asymptotic growth rate

● Irreducibility – The life cycle graph contains a 
path from every node to every other node

● Primitivity – A projection matrix is primitive if it 
become positive (every element >0) when 
raised to a sufficiently high power

– A sufficient condition for primitivity is the 
existence of two adjacent classes with positive 
fertility



  

Summary

● Age- and stage-structured populations have a growth rate analogous 
to the growth rate of unstructured populations

– This growth rate is given by the dominant eigenvalue of the 
population projection matrix

– This growth rate is approached asymptotically

– Transient dynamics may occur before the asymptotic growth 
rate is achieved

● Populations growing according to an age-structured model have a 
stable age distribution

● Sensitivity and elasticity analysis may be used to determine which 
ages/stages contribute most to population growth

● (The Lotka-Euler equation is the characteristic polynomial of the 
Leslie matrix and related age specific reproduction and cumulative 
survival to the growth rate )

● (The McKendrick-von Foerster model is a partial differential equation 
model for age-structured growth in continuous time)


