
Predator-prey interactions

Key concepts
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Predator-prey cycles

All organisms use resources for growth, survival and reproduction. A

large number of species obtain these resources by eating other species.

Consequently, predator-prey interactions are common in nature and

the goal of this chapter is to explore the ways in which predation

can affect the fate of both species involved. The fact that so many

predator-prey interactions exist suggests an enduring quality to the

interaction, which may appear puzzling since it is such an assymetrical

interaction (the prey rarely turns the tables to become the predator).

To help us consider why predator-prey interactions persist over very

long time scales, let’s first consider a motivating case study.

The temperate desert of Curlew Valley, Utah is home to a num-

ber of wild coyotes (Canis latrans). Although omniviorous, small

mammals form an important part of their diet. The jackrabbit Lepus

californicus is one of its most reliable sources of prey.

Figure 1: Coyote (Canis latrans).

Abundace of both of these species has been estimated continuously

in Curlew Valley from 1962-1986 (Figure 2). Clearly the abundances of

these two species are connected. Specifically, we note

1. the jackrabbit population tends to increase when the coyote popu-

lation size is low,
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Figure 2: Abundances of coyotes

(filled circles) and jackrabbits (open
circles) in Curlew Valley, Utah (1962-

1986).

2. decreases in the jackrabbit population are typically followed by

decreases in the coyote population,

3. the jackrabbit population tends to decrease when the coyote popu-

lation size is high,

4. increases in the jackrabbit populations are typically followed by

increases in the coyote population.

Taken together, these pieces of evidence suggest that both the

predator and prey populations are cycling between relatively low and

high abundances. The cycling suggests that rather than the predator

species consuming all the prey, its population drops when prey sources

are scarce allowing the few remaining prey to escape predation and

begin a period of prey population growth. In order to more formally

consider interactions between predators and their prey, we can build a

model descirbing their interaction.

Predator-prey models

Let’s consider a model of interacting prey (n) and predator (p) popu-

lations:

dn/dt = rn − bnp

dp/dt = bcnp − ep. (1)
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We are assuming that the prey population would undergo exponential

growth (at rate r) in the absence of the predator, and the predator

population would undergo exponential decline (at rate e) in the ab-

sence of the prey. The predation (modeled with −bnp and +bcnp
terms) assumes that the per capita predation rate scales with prey

population size (each indiviual predator eats more prey if more prey is

available). The predation rate parameter b gets multiplied by another

parameter c in the predator equation. This captures the idea that the

correspondence between number of prey eaten and number of predator

offspring born thanks to this resource is not necessarily one-to-one. We

can think of parameter c as a conversion efficiency (conversion of prey

into predator offspring).

Figure 3: Predator-prey dynamics

of equations 1 with parameters r =
100.0, b = 0.4, c = 0.3, e = 80.0.

Figure 4: Phase portrait of predator-
prey dynamics of equations 1 with

parameters r = 100.0, b = 0.4, c =
0.3, e = 80.0. Two different set of
intitial conditions are used in the blue

(n0 = 1000, p0 = 10) and gray plots

(n0 = 500, p0 = 500)

We can solve this model by integrating both equations simultane-

ously (using a computer) and example solutions are shown in Fig. 3

(populations versus time) and Fig 4 (phase portrait). The phase por-

tait shows how the two populations change relative to one another.

Each point in time is a specific part of the curve (e.g., on the blue loop

in Fig. 4). We read down to the x-axis to find the prey population size

at that time and left to the y-axis to find the predator population at

that same time. Because the populations are cycling indefinitely at the

same amplitudes, the phase portrait is a closed loop.

While these figures capture the essence of the cycling in the predator-

prey data, both populations in the model experience troughs (Fig. 3

where the population size is so small, that they would, in reality, go
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extinct (and this is true for almost all realistic choices of parameter

values). Since many predator-prey interactions are enduring at the

population level, this illustrative model requires additional features of

real predator-prey systems. From any intitial conditions the sys-
tem described by equations 1 forms a

loop in the phase portrait (illustrated

with the blue and gray curves as ex-
amples). This means the system is

neutrally stable. Neither population

moves to an equilibrium point, but
neither of them wander from their

trajectory on the loop. Assuming

that during initial encounters, one or
both populations would be small, then

loops will always pass close to the
axes where extinction becomes likely.

Prey self-regulation

While archetypal predators like rabbits are at least anecdotally fast

reproducing, it is unrealistic to assume that their population would

continue to grow exponentially. We can include density-dependent

population growth by ammending the model to

dn/dt = rn
(

1 − n
K

)
− bnp

dp/dt = bcnp − ep. (2)

By limiting prey population to a carrying capacity (K) we may have

made conditions worse for either species or possibly enabled coexis-

tence. But how to tell? We can use a technique called linear stability

analysis to study the long term behavior of interacting populations.

Linear stability analysis x=a x=b

y=f(x)

df/dx at x=a

Figure 5: The concept of linearization.

The non-linear function y = f (x)
is linearized (by differentiation to

get the slope) at the point x = a.

Provided the point x = b is not too far
from x = a we can approximate y at

x = b as “d f /dx evaluated at x = a”.

Then we would plug in x = b to this
straight line equation to approximate

the y value at this point.

The following technique is a powerful tool for assessing the stability

of equiliria associated with interacting populations. We’ll illustrate it

here with equations 2, but bear in mind that it can be used in many

other interacting scenarios (competition, parasitism etc.).

Like in previous analyses of single species populations, we’re ask-

ing what happens to populations if we “nudge” them away from their

equilibria. Do they return to equilibria or does the nudge (technically:

perturbation) grow? To answer this, we only need make small pertur-

bations to the system.

We’ll examine the stability of the coexistence equilibrium associa-

tion with equations 2, which we find by setting the equations equal to

zero, and solving for non-zero (co-existence) values of n and p:

n∗ =
e

bc
, p∗ =

r
b

(
1 − e

bcK

)
(3)

Because we’re making arbitrarily small perturbations, we can lin-

earize the system describing the dynamics of predator and prey. The

basic concept is outlined in Fig. 5. We take derivatives of our (non-

linear) equations and evaluate them at the equilibrium of the system.

Note that if we perturb, for exam-

ple, the prey population by a small

amount ε away from its equilibrium n∗

then n = n∗ + ε. The population (and
the perturbation) will then change
over time: n(t) = n∗ + ε(t) and the
dynamics of n will be the same as the

dynamics of ε since dn/dt = dε/dt,
with the constant, n∗, differentiating
to zero.

We organize these derivatives into a matrix called a Jacobian ma-

trix. For a system such as
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dn1/dt = f1(n1, n2)

dn2/dt = f2(n1, n2) (4)

where the functions f1 and f2 describe the interaction between species

1 and 2, the Jacobian has the form

J =

[
∂ f1
∂n1

∂ f1
∂n2

∂ f2
∂n1

∂ f2
∂n2

]
(5)

where the (partial) derivatives are performed to linearize the system.

This allows us approximate the dynamics of the system close to a

point of interest (normally an equilibrium point)[
dn1/dt
dn2/dt

]
=

[
∂ f1
∂n1

∂ f1
∂n2

∂ f2
∂n1

∂ f2
∂n2

] [
n1

n2

]
(6)

Our Jacobian matrix has the form

J =

[
r
(

1 − 2n∗
K

)
− bp∗ −bn∗

bcp∗ bcn∗ − e

]
(7)

Before we work through the algebra further, let’s briefly consider a

more simple Jacobian matrix, so that we know what to look for in the

following analysis

J =

[
w x
y z

]
(8)

This square matrix is similar to those we encountered in the age struc-

ture chapter, when we noted that eigenvalues gave information about

population growth. Because we have linearized, the structure of the

matrix is also very similar to the age-structured projection matrix.

There, the linear nature (without density dependence) gave rise un-

bounded growth (or decline) according to the dominant eigenvalue.

The eigenvalues of this generic Jacobian matrix are found from the

characteristic equation

(w − λ)(z − λ) − xy = 0 (9)

which is equivalent to

λ2 − (w + z)λ + (wz − xy) = 0. (10)

The eigenvalues give information on the growth (or decline) of the

perturbation. The formula is quadratic in λ where (w + z) (also called

the trace, T) is the sum of the eigenvalues and (wz − xy) (also called

the determinant, D) is the product of the eigenvalues. For D to be >0
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then the eigenvalues must be of the same sign (either both positive

or both negative), and for T to be <0 then the eigenvalues must be

negative. Therefore, if D > 0 and T < 0 then both eigenvalues are

negative which means that perturbations are guaranteed to shrink over

time. This would mean that the equilibrium in question is stable to

perturbations.

Limited prey growth and predator-prey coexistence

Now back to our coexistence equilibrium of predator and prey pop-

ulations, with density-dependent prey population growth, equations

(2). At the coexistence equilibrium, equation 3, the Jacobian can be

written as

J =

[
− e

bcK −bn∗

bcp∗ 0

]
(11)

Note, we only care in the details so far as they let us know the sign of

the trace, T, and determinant, D. Remember the parameters are all

positive numbers (representing rates, conversion efficiency and carrying

capacity) and the equilibrium values n∗ and p∗ are also both positive

in the case of coexistence. Consequently, we see that T < 0 and D > 0
and conclude that coexistence is stable (Fig. 6).

Figure 6: Example dynamics of
predator and prey populations when

the prey has density dependent

populaiton growth.

Functional responses: handling times and satiation

We’ve seen that adding density-dependence to the prey population

stabilizes the interaction between predator and prey. But is that the

only mechanism that can lead to coexistence? In the studies of coyotes

and jackrabbits in Curlew Valley, functional feeding responses were

measured. These measures (including number of predator scats found

containing prey items such as hair and teeth) relate how much preda-

tion is occurring to how many prey are available (Fig. 7). These data

are evidence that our earlier linear assumption about predation (dou-

bling the amount of prey doubles the amount of predation, equation

(1)) does not apply in the coyote-jackrabbit system. Rather, the impli-

cation is that the per capita predation rate is a saturating function of

prey population size, meaning it increases initially then levels off - like

the solid line shown in Fig. (7).

Figure 7: C. latrans functional feeding

response to L. californicus abundance

in Curlew Valley, Utah, 1977-1993.
(Adapted from Bartel and Knowlton,

2005, Canadian Journal of Zoology)

In this case the per capita predation rate can be modeled as

b(n) =
an

aTHn + 1
(12)

When n is small, the denominator of equation (12) is dominated by 1

(since 1 > aTHn for small n). In this case, the expression is similar

to our original scenario where per capita predation increases with



7

prey population size. When n is large, the denominator of equation

(12) is dominated by aTHn in which case the overall predation rate

is approximately 1/TH. We can think of TH as the handling time

associated with tracking, catching and eating prey. When this time

is long, the maximum predation rate is relatively low. The original

assumption in equation (1) (a straight line relationship between prey

population size and per capita predation rate) is referred to as a type

1 functional response. This alternative assumption (supported by the

coyote-jackrabbit data) is referred to as a type 2 functional response.

We can assess whether this mechanism is also stabilizing (when act-

ing alone - i.e., without density-depdendent prey population growth)

by considering the following description of the predator-prey interac-

tion Note: we’ve replaced rn(1 − n/K) with

the original rN

dn/dt = rn − anp
aTHn + 1

dp/dt =
acnp

aTHn + 1
− ep. (13)

Following the same methodology as earlier, we can calculate the

co-existence equilibrium

n∗ =
e

aTH(c/TH − e)
, p∗ =

rc
aTH(c/TH − e)

(14)

The trace (T) for the coexistence equilibrium in this model evaluates

to reTH/c which is positive. This means that the type 2 functional re-

sponse is a destabilizing mechanism. We can interpret this biologically

by considering the per capita prey mortality (remember: predation is

the only source of prey mortality considered in these models). The per

capita prey mortality is given by

− ap
aTHn + 1

(15)

The n in the denominator of equation (15) means that per capita

prey mortality decreases with increasing prey population size (“safety

in numbers”). This leads to a positive feedback and supports ever

increasing predator populations.

Functional responses: prey switching

Figure 8: Type 3 functional response

models prey switching, where a
generalist predator prefers some other

food source (not illustrated) when

target prey population density is
below some threshold.

Another important functional response applies to generalist predators

(those that feed on several prey species). Because hunting prey is time

consuming, predators are apt to target abundant host species (when

they won’t have to spend as much time looking for their prey com-

pared to hunting a relatively rare species). We can conceptualize this
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as a predation rate that is maximal when prey populations are abun-

dant and close to zero when prey are below some threshold population

density. This is the characterized by a type 3 functional response (Fig.

8.

While intuitively, this would appear to be a mechanism for coex-

istence (since the predators will leave small prey populations alone),

the stability of the coexistence equilibrium in this case depends on the

specific parameters of the model (including the parameters used to

generate the type 3 functional response and initial conditions).

Explaining persistent cycles

Already in this chapter we’ve encountered predator-prey models that

are neutrally stable, stable and unstable. But what about our original

motivating (and highly representative) dataset of coyotes and jackrab-

bits suggesting persistent cycles? Our modeling toolkit may have the

answer since multiple mechanisms could be operating simultaneously.

Importantly, stabilizing and destabilizing mechanisms could very likely

be in operation in a broad array of predator-prey interactions.

With the right parameterization (choice of parameters), a predator-

prey model that includes prey regulation and a type 2 functional re-

sponse can generate persistent cycles (Fig. 9), though it can also lead

to damped oscillations towards the coexistence equilibrium.

dn/dt = rn
(

1 − n
K

)
− anp

aTHn + 1

dp/dt =
acnp

aTHn + 1
− ep. (16)

The paradox of enrichment

This idea was proposed by Rosen-

zweig, 1971 ”The Paradox of Enrich-
ment” Science Vol. 171: pp. 385-387

An interesting outcome from the model with stabilizing and destabi-

lizing mechanisms present, equations (16) is that any enrichment of

the environment with resources that increase the prey carrying capac-

ity generate predator-prey cycles with more extreme amplitudes (Fig.

10). This means that in the population troughs, both predator and

prey are more vulnerable to extinction. Rather than such additional

resources helping the prey (and thereby helping their predator), they

cause the system to exhibit dynamics that are detrimental to both

species.
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Figure 9: Dynamics of equations (16)

giving rise to persistent cycling of

predator and prey populations, with
parameters r = 0.2, a = 0.02, c = 1, e =
0.4, K = 120, TH = 1.0

Figure 10: The paradox of enrich-
ment: providing resources to the prey

which increase its carrying capacity,

leads to predator prey-cycles in which
both species are more likely to go

extinct in population troughs.
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Important alternative/complementary mechanisms

Although we’ve covered many of the important mechanisms to help

understand the enduring nature of asymmetrical predator-prey interac-

tions, there are some other mechanisms that can help to stabilize the

dynamics. These mechanisms include

� Predator self regulation

� Spatially distributed prey refuges

� Predator immigration

These mechanisms may act independently or with other mecha-

nisms already outlined. Together, this body of knowledge help us

appreciate how one type of interspecific interaction can have so many

outcomes.

Test yourself

� Which of the functional feeding responses 1, 2 and 3 refer to density-

dependent predation?

� What is the concept of linearization?

� What are possible outcomes of combining stabilizing and destabiliz-

ing mechanisms?

� What is a handling time?

� What is the paradox of enrichment?

Further reading

� Bartel and Knowlton, 2005 “Functional feeding responses of coyotes,

Canis latrans, to fluctuating prey abundance in the Curlew Valley,

Utah, 1977-1993” Canadian Journal of Zoology Vol. 83: pp. 569-478

� Bartel, Knowlton and Stoddart, 2008 “Long term patterns in mam-

malian abundance in northern portions of the Great Basin” Journal

of Mammalogy Vol. 89: pp. 1170-1183

� Rosenzweig, 1971 “The Paradox of Enrichment” Science Vol. 171:

pp. 385-387
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Homework

1. Use equations 2 to derive the coexistence equilibrium shown in

equation 3.

2. Sketch an example of a predator-prey interaction exhibiting damped

oscillations as both a regular plot (x-axis=time, y-axis=both popu-

lation sizes) and a phase portrait. Label the initial conditions and

any stable equilibria.

3. Write down a model with both predator and prey density-dependent

growth, a type 2 functional response and predator immigration.

4. Draw coexistence (non-zero) nullclines for the 3 models given by

equations 1, 2 and 13. Which models have density-dependence?

What is the relationship between nullclines and density-dependence/independence?

5. By calculating diagonal elements of the Jacobian for the model

represented by equations 2 show that the Trace for the coexistence

equilibrium is −e/bcK.
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