# **Population Growth & Decline**

ECOL 4000/6000

#### What is the difference between an open and closed population?



# Decline and growth of Yellowstone Grizzly Bears





Ursus arctos horribilis

# Decline and growth of Yellowstone Grizzly Bears





Ursus arctos horribilis

# Decline and growth of Yellowstone Grizzly Bears





Ursus arctos horribilis

Additional regulations introduced

### A population ecology goal: to understand population-level patterns and be able ultimately to predict changes in them





Ursus arctos horribilis

Additional regulations introduced

### Questions about growth and decline



- How much change in mortality was required to shift the balance from decline to growth?
- If interventions had not been undertaken, would the population have gone extinct? When?
- Is the population safe now? What is the chance that it might still go extinct?

# What causes growth and decline?

# What causes growth and decline?

Four key demographic processes

- Reproduction (+)
- Mortality/Survivorship (-)
- Immigration (+)
- Emigration (-)

"Open" Population

# What causes growth and decline?

Four key demographic processes

- Reproduction (+)
- Mortality/Survivorship (-)
- Immigration (+)
- Emigration (-)

"Closed" Population

The fundamental equation of population ecology

$$\Delta N = N_{t+1} - N_t = B_N - D_N + I_N - E_N$$

The fundamental equation of population ecology

$$\Delta N = N_{t+1} - N_t = B_N - D_N + I_N - E_N$$

- Assume a closed population (ignore I & E)
- Assume no heterogeneity
- Assume no density dependence

The fundamental equation of population ecology

$$\Delta N = N_{t+1} - N_t = B_N - D_N + I_N - E_N$$

- Assume a closed population
- Assume no heterogeneity
- Assume no density dependence

•Recall that  $B_N$  and  $D_N$  are the number of births and deaths in a population of size N

•If each individual gives birth to B offspring then  $B_N=BN_t$ 

•Similarly, if each individual has a chance of dying of D, the number of deaths is  $D_N=DN_+$ 

•Define  $\lambda$ =B-D+1

The fundamental equation of population ecology

$$\Delta N = N_{t+1} - N_t = B_N - D_N + I_N - E_N$$

- Assume a closed population
- Assume no heterogeneity
- Assume no density dependence

$$\Delta N = N_{t+1} - N_t = BN_t - DN_t$$
$$N_{t+1} = BN_t - DN_t + N_t = \lambda N_t$$

•Recall that B<sub>N</sub> and D<sub>N</sub> are the number of births and deaths in a population of size N

•If each individual gives birth to B offspring then  $B_N=BN_t$ 

•Similarly, if each individual has a chance of dying of D, the number of deaths is  $D_N=DN_+$ 

•Define  $\lambda$ =B-D+1

 $N_{t+1} = (B - D + 1)N_t = \lambda N_t$ 

$$N_{t+1} = (B - D + 1)N_t = \lambda N_t$$
$$N_{t+2} = (B - D + 1)N_{t+1} = \lambda N_{t+1}$$

$$N_{t+1} = (B - D + 1)N_t = \lambda N_t$$
$$N_{t+2} = (B - D + 1)N_{t+1} = \lambda N_{t+1}$$
$$N_{t+2} = (B - D + 1)\lambda N_t = \lambda \lambda N_t = \lambda^2 N_t$$

$$N_{t+1} = (B - D + 1)N_t = \lambda N_t$$
$$N_{t+2} = (B - D + 1)N_{t+1} = \lambda N_{t+1}$$
$$N_{t+2} = (B - D + 1)\lambda N_t = \lambda \lambda N_t = \lambda^2 N_t$$

In general...

$$N_t = \lambda^t N_0$$

# Geometric growth and decline



Estimating 
$$\lambda$$
 from data  
 $N_t = \lambda^t N_0$   
 $N_t / N_0 = \lambda^t$   
 $\log(N_t / N_0) = \log(\lambda^t)$   
 $\log(N_t / N_0) = t \log \lambda$   
 $\frac{\log(N_t / N_0)}{t} = \log \lambda$   
 $\frac{\log(N_t / N_0)}{t} = \lambda$ 

#### Worked Example

Given that the Yellowstone Grizzly population was 44 in 1959 and 34 in 1975, what was the average annual reproductive ratio during this period?



Note: natural log used here

Estimating 
$$\lambda$$
 from data  
 $N_t = \lambda^t N_0$   
 $N_t / N_0 = \lambda^t$   
 $\log(N_t / N_0) = \log(\lambda^t)$   
 $\log(N_t / N_0) = t \log \lambda$   
 $\frac{\log(N_t / N_0)}{t} = \log \lambda$   
 $\frac{\log(N_t / N_0)}{t} = \lambda$ 

#### Worked Example

Given that the Yellowstone Grizzly population was 44 in 1959 and 34 in 1975, what was the average annual reproductive ratio during this period?

#### $\lambda = e^{\log(34/44)/16} = e^{-0.0161} = 0.984$



Note: natural log used here

# Estimating $\lambda$ from data $N_t = \lambda^t N_0$ $N_t/N_0 = \lambda^t$ $\log(N_t/N_0) = \log(\lambda^t)$ $\log(N_t/N_0) = t\log\lambda$ $\frac{\log(N_t/N_0)}{\log \lambda} = \log \lambda$ $\frac{\log(N_t/N_0)}{t} = \lambda$ e

#### Question

Notice how the population seemed to turn a corner sometime between 1973 and 1978. If we calculate the average reproductive ratio between one of these years and the end of the time series in 1997, will we find

- (a) λ<1
- (b) λ=1
- (c) λ>1

Does it matter what year we choose to be *t*=0? How will this choice affect our estimate of  $\lambda$ ?

Note: natural log used here

# Review – so far (discrete time model)

- We see the solution is geometric in time
- Change in population size depends on current size
   (N) and growth rate (λ)
- 3 possible outcomes
  - $\lambda > 1$  (N increases)
  - $\lambda = 1$  (N remains constant)
  - $\lambda < 1$  (N declines)
- We can estimate  $\lambda$  from time series data

# Continuous time model

- Many species reproduce more-or-less continuously over time
- EXERCISE: work through equations 13-21 in class
- $dn/dt=b*n-d*n \rightarrow n=n_0*e^{r*t}$



# Continuous time model

- Similar 'threshold' as discrete-time model
- Make sure you follow equations 22-25
- r=ln(λ)



| Phenomenon             | Discrete time | Continuous time |
|------------------------|---------------|-----------------|
| Population<br>decline  | λ<1           | r<0             |
| Population<br>constant | λ=1           | r=0             |
| Population<br>growth   | λ>1           | r>0             |

# Summary and expectations

- Fundamental equation (know this)
  - open (including immigration/emigration)
  - closed (just births/deaths)
- Discrete time model (λ=1 threshold)
  - Should be able to get  $\lambda$ =... from N<sub>t</sub>= $\lambda$ <sup>t</sup>N<sub>0</sub>
- Continuous time model (r=0 threshold)
  - Should be able to solve dn/dt=r\*n
- Can use data to estimate parameters (e.g.  $\lambda$ )
  - Should be able to do calculation similar to bears worked example
- Can use model + parameters to make predictions
  - Should be able to make a straightforward prediction of a future population size using either model, provided with parameters and initial population size

# Homework 1

- All homework questions of chapter 1 (#1-6)
- Questions can be typed or scanned (incl. photo *if clear*)
- Study groups encouraged turn in individual answers
- Email (awpark@uga.edu) by 5pm Aug 30<sup>th</sup>