
Density dependence

Key concepts

� State variables vs. parameters

� Density dependence

� Intrinsic rate of increase and carrying capacity

� Stability

� Resilience

� Allee effect

Population growth of muskox on Nunivak Island

The muskox Ovibos moschatus is a large mammal closely related to

sheep and goats native to the North American Arctic and Green-

land. It is one of the few Pleistocene megafauna to survive the Pleis-

tocene/Holocene extinction event, but declined in the 19th century

due to overhunting. In 1931, the US Fish and Wildlife Service intro-

duced 31 animals to Nunivak Island, Alaska, where the species had

previously been extirpated. Frequent censuses since that time show

that the habitat of Nunivak Island was suitable and the population

grew (Figure 2).

Figure 1: Muskox (Ovibos moscha-

tus).

When we first considered the growth and decline of populations,

we assumed that any change in the population was due to continuous

reproduction and mortality that occurred at fixed rates. Thus, we

arrived at a simple differential equation

dn/dt = (b − d)n = rn (1)

and its solution

nt = n0ert. (2)
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Figure 2: Increase in the muskox

population of Nunivak Island.

In this expression, the variable n is the is the variable undergoing

change and therefore referred to as the state variable, whereas b, d, r
are constants referred to as parameters. In this model, b is the instan-

taneous birth rate, d is the instantaneous death rate, and r = b − d is

known as the intrinsic rate of increase. State variables and parameters

Alternatively, if a population reproduces seasonally its fluctuations

may be described by a discrete time map Continuous vs. discrete time dynam-
ics

nt+1 = (b − d + 1)nt = λnt (3)

with solution

nt = λtn0. (4)

In this model, λ is referred to as the geometric growth rate. From 1

and 4 we see that under these assumptions there are a limited number

of possible trajectories: Possible solutions of density indepen-
dent models

� If r > 0 or λ > 1 the population will grow without bound

� If r < 0 or λ < 1 the population will decline asymptotically toward

zero

� Finally, if r = 0 or λ = 1 the population stay at its current value

(but this is an extremely delicate condition that isn’t expected to

obtain in nature)
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Clearly, the muskox of Nunivak Island most closely match the first

scenario. But what is the intrinsic rate of increase of this population?

To determine this, we derive an estimator of r as follows. First, we

observe that by rearranging equation 2 we can relate the intrinsic rate

of increase over any interval of time (designated τ) to only observable

quantities, namely population size at the start of the interval (n0),

population size at the end of the interval (nτ), and the duration of the

interval (τ):

r̂ = ln(nτ/n0)/τ, (5)

where ln is the natural logarithm and the “hat” symbolizes that this

is an estimator, not necessarily the “true” value. If we now consider

all subsequent intervals between 1936 and 1966 we obtain 22 different

estimates for the intrinsic rate of increase r (Table 1).

Years τ n0 nτ r̂
1936–1938 2 31 36 0.074765867

1938–1944 6 36 38 0.009011204

1944–1947 3 38 40 0.017097765

1947–1948 1 40 50 0.223143551

1948–1949 1 50 55 0.095310180

1949–1950 1 55 65 0.167054085

1950–1951 1 65 75 0.143100844

1951–1952 1 75 85 0.125163143

1952–1953 1 85 99 0.152468594

1953–1954 1 99 112 0.123379021

1954–1955 1 112 130 0.149035579

1955–1956 1 130 148 0.129677823

1956–1957 1 148 170 0.138586163

1957–1958 1 170 195 0.137201122

1958–1959 1 195 225 0.143100844

1959–1960 1 225 258 0.136859183

1960–1961 1 258 295 0.134015771

1961–1962 1 295 339 0.139024751

1962–1963 1 339 391 0.142707453

1963–1964 1 391 446 0.131611392

1964–1965 1 446 514 0.141904313

1965–1966 1 514 640 0.219244911

Average 0.1306 (s.d. 0.0495)

Table 1: Estimates of the intrinsic

rate of increase of muskox on Nunivak
Island from 1936-1966.

One thing this table shows is how remarkably constant the intrinsic

rate of increase was from 1936-1966. Is it possible that the assumption

of constant vital rates is perfectly acceptable for the muskox of Nuni-

vak Island? In answer to this this question, Figure 3 shows what the
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population size would be up to the year 2010.
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Figure 3: Projected increase in the
muskox population of Nunivak Island.

As in Figure 1, observations from 1936 to 1966 are shown as points.

In addition, this plot shows (as a blue line) extrapolations to 2010

based on the observed period. According to this model, if the Nunivak

Island muskox population had grown at the same rate after 1966 that

it had up until that time it would now number approximately 200,000

animals. Incidentally, this is roughly twice the total world population

of muskox.1 The Nunivak Island population, by contrast, numbers 1 A. Gunn and M. Forchhammer.
IUCN Red List of Threatened Species:

Ovibos moschatus, 2008
about 550 animals.2

2 EJ Wald. Nunivak island rein-
deer and muskoxen survey - 2009.

Technical report, US Fish & Wildlife

Service, 2009

Density dependent vital rates

The reason populations don’t grow without bound isn’t mysterious,

but is rather one of the most fundamental observations of population

ecology. Many resource such as food, territories, or light are such that

use by one individual prevents their simultaneous use by other indi-

viduals, that is they are rivalrous resources. Competition for rivalrous

resources ensures that at some point the available quantity of one or

more resources becomes limiting and further growth is restrained.

How does this limitation occur? Our demographic theory of pop-

ulation dynamics (i.e., dynamics of the kind envisioned by equation

1 or 3) requires that any effect of limiting resources act through the

vital rates. One way to represent this density dependence is to allow

the birth rate or the death rate to be a function of the population



5

size. Thus, for instance, we might allow the birth rate to decline with

population size,

b(n) = b0 − b1n, (6)

or let mortality increase with population size

d(n) = d0 + d1n. (7)

Logistic model

If we substitute b(n) for b and d(n) for d in equation 1 we may derive

a new density-dependent model for the population growth.

dn/dt = (b(n) − d(n))n = ((b0 − b1n) − (d0 + d1n))n. (8)

Rearranging and substituting r = b0 − d0 and k = (b0 − d0)/(b1 + d1)

we obtain the canonical form of the logistic model :

dn/dt = rn(1 − n/k), (9)

where the parameter k must be greater than or equal to zero. This

model is one of the most analyzed formulas in all of ecology. Although

it may occasionally suffice as a realistic model for some population or

other, this situation is rare. Rather, the value of this model is heuris-

tic. For instance, if we think of the linear equations 6 and 7 as the

simplist possible expressions of the idea of density-dependent vital

rates, or as linear approximations to any more complicated expres-

sions, then the logistic model is the simplest density-dependent popu-

lation growth model. Despite this simplicity, many very general lessons

can be learned from this model.

Equilibria

One property of this model is that is posesses one or more equilibria.

In population ecology, as in other areas of science, an equilibrium

is a state of the system at which it is unchanging. We have in fact

already seen an equilibrium in this chapter. One of the three possible

trajectories for the linear models in equations 2 and 4 was that there

was no change. This occurred only when r = 0 or λ = 1, respectively.

We asserted that these conditions would not obtain in nature. Why?

Because if r is just slightly greater than or less than 0 (or if λ is just

greater than or less than 1) then the the system is no longer at an
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equilibrium. These equilibria are fleeting conditions that exist only

under extraordinarily fortuitous and unlikely circumstances concerning

the models parameters.

By contrast, there can also be conditions concerning the state vari-

able n that give rise to equilibria. That these conditions can be robust

can be seen with the logistic model. However, first we must identify

the equilibria. By definition, such equilibria are states of the system

(values of n) at which the population size is unchanging. To find these,

we set equation 9 equal to zero and solve for n. By simple inspection

we determine that the logistic model exhibits two equilibria. Conven-

tionally, we designate these as n∗, so the equilibria are given by n∗ = 0
and n∗ = k.

In addition to being equilibria, these two states of the system also

have special ecological significance. The lower equilibria, n∗ = 0, is

the condition that there are zero individuals in the population. We

call this condition extinction. The upper equilibrium, n∗ = k, is the

maximum positive value that the population can achieve without then

being forced to decline. It is called carrying capacity.

How do populations subject logistic growth behave? This question

also can be answered by inspecting equation 9. First, obviously, the

answer is that it depends on what values the variables take, including

both the parameters and the state variable. However, if we’re willing

to choose valuse of r, k, and n we can always evaluate equation 9 to

obtain the growth rate. If the growth rate is positive this means the

population will increase from this condition. If the growth rate is

negative then the population with decrease from this condition.
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Figure 4: Growth rate in the logistic
model with r > 0.

The range of possibilities can be illustrated by a graph showing

the population size on the x-axis and the growth rate on the y-axis.

Figure 4 plots equation 9 where r > 0. (Note: we will always assume

k > 0 since the model is biological nonsense otherwise.) The dashed

horizontal line is the zero line. Portions of the growth curve above

this line correspond to population sizes as which growth is positive

and the population increases; portions of the growth curve below

this line correspond to population sizes as which growth is negative

and the population decreases. The equilibria are clearly indicated by

the intersections of the growth curve and the zero line. The vertical

dashed line is at n = k, carrying capacity. What this plot shows is that

populations less than carrying capacity increase (with the exception of

zero itself), while populations greater than carrying capacity decrease.
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Figure 5: Growth rate in the logistic
model with r < 0.

What about populations where the intrinsic rate of increase is neg-

ative? We can investigate this possibility too. Although the ecological

sensibility of this model is questionable (what does it mean to have

a “carrying capacity” when the population cannot sustain itself even

at small population sizes?), it may nevertheless suffice at small popu-
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lation sizes. In this case, Figure 5 shows that the population growth

rate is everywhere negative. As one intuitively expects, the population

declines to extinction.

What do these growth curves imply concerning population trajecto-

ries? We start by considering the first (typical) case where r > 0 and

look at populations initially both above and below carrying capacity?

Solutions of the model in equation 9 are given by the equation

nt =
k

1 + (k/n0 − 1)e−rt . (10)

Using this equation, we can plot the population size over time for a

given combination of r and k and initial population size.
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Figure 6: Solutions of the logistic

model with r > 0. Dashed lines
show carrying capacity (n = k) and

extinction (n = 0).

As one expects, when r > 0 populations initially below carrying

capacity increase to asymptotically approach the equilibrium value

n = k while populations initially above carrying capacity decline in

the same fashion (Figure 6). In contrast, when r < 0 populations

universally decline to extinction (Figure 7).

What these plots show is that trajectories may either converge to or

diverge from equilibria. Which of these situations occurs can be deter-

mined by evaluating the growth rate (equation 9) somewhere near to

(but not exactly at) the equilibrium. An equilibrium from which pop-

ulation trajectories diverse is called unstable while an equilibrium to

which trajectories converge is called stable. In the logistic model with Stability of equilibria

r > 0, carrying capacity (n = k) is a stable equilibrium and extinction

(n = 0) is unstable. However, when r < 0 the only ecologically sensible

equilibrium is extinction, which is unstable.
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Figure 7: Solutions of the logistic

model with r < 0. Dashed line shows
extinction (n = 0).
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Figure 8: Bifurcation diagram of

logistic model.

Catastrophic extinction & resilience

All of the analysis up to this point has proceeded by assuming a single

combination of values for r and k. Can we possibly say anything more

general? One approach is to ask how the equilibria change as r and k
are varied over their possible ranges. A bifurcation diagram is a plot

of the equilibria of a system against one or more of its parameters,

which are referred to as the bifurcation parameters. Thus, for instance,

if we choose to use k as the bifurcation parameter we draw the plot in

Figure 8. Conventionally, the stable equilibrium is plotted as a solid

line and the unstable equilibrium is plotted as a dashed line. The plot

is called a bifurcation diagram because the point at k = 0 is a special

point at which the two branches of equilibria meet and “exchange”

stability. This point is called a transcritical bifurcation. What this

plot shows is that as the carrying capacity declines from some large

value (e.g., k = 100) toward extinction, then the equilibrium value the

population tends to also declines proportionately. Given what we know

about the logistic model already, this is unsurprising.
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Figure 9: Bifurcation diagram of
logistic model.

What if we consider instead r as the bifurcation parameter. As

before there is a transcritical bifurcation where two branches of the

bifurcation diagram exchange stability. At values of r greater than

zero the population equilibrium is a positive stable value. Indeed,

this value is the carrying capacity. However, unlike in the case with

k as bifurcation parameter, as r declines toward the critical point at

r = 0 there is no decline in the equilibrium population size. Instead,

at the instant that r declines to zero the upper branch of equilibria

disappears and the unstable equilibrium at extinction becomes stable.

Such discontinuities correspond to large jumps in the state of the
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system (in this case annhilation of the population) and are referred

to as dynamical catastrophes. Thus, a decline in the intrinsic rate of

increase may result in catastrophic extinction whereas as decline in

carrying capacity does not. Catastrophic extinction

Catastrophic extinction is an interesting – and practically impor-

tant – phenomenon. But, is it really the case that a population can be

subject to a change such as declining intrinsic rate of increase with-

out exhibiting any evidence of this fact? In fact, no. Even though,

in this model, there is no effect of decreasing r on the equilibrium at

carrying capacity, there is another effect. To illustrate, we consider two

scenarios. Both situaations are governed by the logistic model with

k = 10. In the first case we have a population with a robust intrinsic

rate of increase of r = 2, but in the second case we assume the in-

strinsic rate of increase is very close to the critical point at r = 0, say

r = 0.1. What is the difference? In fact, if both populations are at

carrying capacity the model suggests that there will be no difference: a

population at carrying capacity will stay at carrying capacity, barring

perturbations that displace the population size from carrying capacity.

Of course, real populations (rather than mathematical models) are

subject to such perturbations. Does this make a difference? Yes. In

Figure 10 we look at these two scenarios under a perturbation of size

∆n. Such a perturbation could be an exogenous shock such as might

be caused by a weather event (e.g., a hurricane) or intrinsic noise due

to the fact that population growth and decline will never follow de-

terministic differential equations directly. It doesn’t matter. It also Extrinsic and intrinsic noise

doesn’t matter whether the perturbation is small or large. All we care

about is that it is non-zero.
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Figure 10: Solutions of the logistic

model after a perturbation. The gray

and blue curves correspond to two
populations, each of which is at car-

rying capacity prior to a perturbation
of size ∆n (which may be either in

the positive or negative directionb).
Blue line shows subsequent return to
equilibrium by population with r = 2.
Gray line shows return to equilibrium

by population with r = 0.1.

What we see in Figure 10 is that for the same perturbation the

population with r = 2 returned to the original equilibrium value

(carrying capacity) much faster than the population with r = 0.1.
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Accordingly, we say that the population with r = 2 is more resilient

than the other population. Further, the return to equilibrium is es- Resilience

sentially the same whether the perturbation is in the positive direction

(increasing the population above carrying capacity) or in the negative

direction (decreasing the population below equilibrium).

Allee effects
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Figure 11: Lowest growth rates of

muskox occurred in the first fifteen
years after introduction.
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Figure 12: Lowest growth rates of

muskox all corresponded to popula-
tions sizes of 40 individuals or fewer.

To conclude our discussion of density dependence we return to our

study of Muskox on Nunivak Island. The density dependence stud-

ied so far is sometimes called negative density dependence because

the effect of density is to reduce the effective population growth rate.

However, if we look at our estimates of r we see that the first four es-

timates of the growth rate, occurring in the first 15 years, were also

the four lowest, hovering just above the replacement rate of r = 0
(Figure 11). Plotting instead against population size, we see that

these were also the times when the population size was lowest (Figure

12). In this case, contrary to the assumptions of the logistic model,

there appears to be some set of small population sizes over which the

per capita population growth rate increases with increasing popula-

tion size. Such a phenomenon often arises when individuals engage in

some kind of cooperative activity such as foraging or defense. Alterna-

tively, in species that reproduce sexually or are obligately outcrossing

hermaphrodites, mate encounter may be rare in sparse populations

resulting in increasing reproductive frequency as population density

increases. Populations in which the per capita population growth rate

increases with population size or density over some interval are said to

exhibit Allee effects, named for the ecologist Warder Clyde Allee who

spent much of his career studying cooperation and its population level

effects.
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Figure 13: Allee effects occur when

the per capita population growth
rate increases over some interval of

population sizes. A weak Allee effect

(dashed blue line) occurs when the
per capita population growth rate is

everywhere positive. Like the logistic
model, the model for a weak Allee

effect has an unstable equilibrium at

extinction (open circle) and a stable
equilibrium (filled circle) at carrying
capacity. A strong Allee effect (black

line) occurs when the positive effects
of deteriorating cooperation are so

severe that below some critical point

the per capita population growth rate
is negative. This critical point (open

circle) corresponds to an unstable

equilibrium.

Allee effects are classified into two kinds.

� Weak Allee effects are those where the per capita growth rate in-

creases over some interval (in keeping with our general definition

above), but is everywhere positive.

� Strong Allee effects occur when the effect of cooperation is so severe

that at some population sizes the per capita population growth

rate is negative. If we also assume that per capita growth rate is a

continuous function of population size, this fact implies that there

is some non-zero population size at which the per capita growth

rate is zero. Such a population size is an equilibrium (by definition).

As inspection of the growth curve in Figure 13 shows, this is an

unstable equilibrium.

One model exhibiting a strong Allee effect is the cubic equation
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dn/dt = rn
(n

a
− 1

) (
1 − n

k

)
. (11)

In this model, the parameters r and k serve roughly the same functions

that they do in the logistic model: k induces a negative density de-

pendence and is the value of the upper equilibrium (carrying capacity)

while r regulates the potential for population growth. Here, the pa-

rameter a (0 < a < k) is the critical density. Populations of size n > a
increase in size to carrying capacity, while populations of size n < a
decline to extinction. This model exhibits a cubic form characteristic

of models of the Allee effect (Figure 14).
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Figure 14: The Allee effect model in
equation 11 exhibits a strong Allee

effect.

Do muskox, then, exhibit an Allee effect? Quite possibly the answer

is yes. Muskox engage in cooperative defense. When exposed to a

predator, bull muskoxen will form a line protecting cows and calves.

When presented with multiple predators, for instance a pack of wolves,

muskoxen will engage in circle defense, where the adults form a tight

circle facing outward protecting the young in the center of the circle

(Figure 15).

Figure 15: Muskox exhibiting distinc-

tive circle defense formation.

Although most ecologists believe that many animal species will ex-

hibit Allee effects if reduced to small size, documented Allee effects

in natural populations are rather rare, probably because populations

that are reduced in size to where Allee effects would be detectable are

both small (and therefore unlikely to be observed) and at high risk for

extinction (and therefore unlikely to persist long enough to measure

the strength of the cooperative effect). However, muskox were among a

small minority of species recently documented to exhibit Allee effects

in a comparative analysis.3 3 Stephen D. Gregory, Corey J. A.
Bradshaw, Barry W. Brook, and
Franck Courchamp. Limited evidence
for the demographic Allee effect
from numerous species across taxa.

Ecology, 91(7):2151–2161, jul 2010.

doi: 10.1890/09-1128.1

Test yourself

� What is density-dependence?

� Under what conditions is the carrying capacity of the logistic model

stable? Under what conditions is it unstable?

� What is a bifurcation? When is the bifurcation of the logistic model

catastrophic and when is it non-catastrophic?

� What is the difference between a weak and a strong Allee effect?
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Further reading

Kramer, A.M., B. Dennis, A. Liebhold, J.M. Drake. 2009. The evi-

dence for Allee effects. Population Ecology 51:341-354.

Homework

1. Derive the estimator in equation 5 from equation 2.

2. The standard deviation of our estimate for the intrinsic rate of in-

crease of the Nunivak Island muskox population is shown in paren-

theses in the last line of Table 1. Using this and other information

in the table estimate the 95% confidence interval of r. Use this in-

formation to put lower and upper bounds on the population size

extrapolated to 2010.

3. Our record of the population of muskox on Nunivak Island is re-

markably good. Suppose instead of annual censuses the only follow

up censuses had been conducted at year 10 (1946) and year 20

(1956). What would you predict the population size to be in 2010.

What are the lower and upper bounds of your estimate?

4. Derive an estimator for λ from equation 4.

5. Derive the canonical form of the logistic model in equation 9 from

the form in equation 8.

6. Solve equation 9 to obtain the solution in equation 10

7. In the equation for exponential growth, the per capita population

growth rate at all population sizes is given by the parameter r and

was called the intrinsic rate of increase. In the logistic equation

the percapita population growth rate declines with population size,

but is at its maximum, which also is equal to r, in the limiting case

where n = 0 (i.e., as population size becomes small the behavior of

the exponential growth model is recovered). Thus, in this case, also,

r may be called the intrinsic rate of increase because it is the max-

imum per capita growth rate. However, this interpretation of r no

longer holds in the model for the Allee effect given in equation 11.

Here the maximum per capita population growth rate occurs at an

intermediate population size n̂, 0 < n̂ < k. Find an expression for

n̂ and the intrinsic rate of increase (maximum per capita population

growth rate) for a population with an Allee effect as in equation 11.
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